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Now 

Atomic origin of the DCE?  

 consider an atom in a potential well, frequency ωcm

Microscopic dynamical Casimir Effect

Microscopic dynamical Casimir effect
Internal degrees of freedom are 
quantum and define energy levels
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angle integration of Eq. (15):

d!
(λ)
DCE

dω
(ω)= (α0vm)2

45πc8
ω3(ωcm − ω)3F (λ)(ω/ωcm), (18)

F (TE)(x) = 11x2 − 7x + 11, (19)

F (TM)(x) = 9x2 − 13x + 19 (20)

in the range 0 ! ω ! ωcm. The total frequency spectrum

d!DCE

dω
(ω) = 2(α0a)2

3πc8
ω3(ωcm − ω)3

[
ω2

cm − 2
3
ω(ωcm − ω)

]

is invariant under the transformation ω → ωcm − ω. This is a
direct consequence of the energy conservation condition for
the emitted photon pair given by Eq. (14). Indeed, each photon
emitted at frequency ω is accompanied by a twin emitted at
frequency ωcm − ω. The same property holds for the DCE with
a macroscopic planar surface [36]. However, whereas for the
latter the TE and TM spectra are also separately symmetric with
respect to ω = ωcm/2, here the TE (TM) spectrum is slightly
shifted towards frequencies larger (smaller) than ωcm/2. Such
asymmetry arises from the emission of mixed TE-TM pairs,
preferably with the TE twin emitted at the upper half of the
frequency interval.

We obtain the total emission rates for each polarization by
integrating (18) over the frequency interval [0,ωcm].The result-
ing TM rate is larger than the TE one by approximately 42%.
The total rate is given by !atom = (23/5670π )(α0a)2ω9

cm/c8.
The same frequency dependence can be found in a different
context, involving a macroscopic metallic sphere treated in
terms of boundary conditions. In fact, we can use the principle
of energy conservation in order to derive the total photon
emission rate from the result for the vacuum dissipative
force on an oscillating perfectly reflecting sphere obtained
in [48]. When the sphere radius R is much smaller than
the typical field wavelength λ ∼ 2πc/ωcm, we find !sphere =
(1/10 368π3)(αspha)2ω9

cm/c8, where αsph = 4πR3 is the elec-
tric polarizability of the metallic sphere [66].

Such comparison between the total emission rates for an
atom and a metallic sphere suggests that our microscopic
approach is capable of explaining several features of the DCE
for macroscopic bodies. In classical electrodynamics, physical
insight is obtained by treating material media as a collection of
dipoles, instead of employing the more standard macroscopic
Maxwell equations and the corresponding boundary condi-
tions, as often discussed in the context of the Ewald-Oseen
extinction theorem [38].

Here we propose to build the first steps of a similar construc-
tion concerning the DCE. In classical electrodynamics, the case
of a material medium with a planar interface provides the most
illustrative example for the comparison with the microscopic
approach. For the DCE, [36] presents a detailed macroscopic
theory of the radiation emitted by an oscillating perfectly
reflecting planar interface. Our results for a single atom already
share some common features with the DCE by a planar
interface: there are more TM than TE photons, and TE photons
are preferably emitted close to the direction of motion. In order
to bridge the gap between [36] and our microscopic results,
we consider that the material half space, limited by a planar

FIG. 3. Comparison between the angular spectra arising from the
oscillation of a single atom for (a) TE and (b) TM polarizations, with
the spectra for an oscillating perfectly reflecting mirror, also shown
for (c) TE and (d) TM polarizations. For the atomic case, we only
consider photon pairs satisfying the constraint (21) associated to the
planar symmetry. The red (light gray), green (dashed gray), and blue
(dark gray) correspond to photon frequencies ω = 0.3 ωcm, 0.5 ωcm,
and 0.7 ωcm, respectively. In the last case, emission is restricted to the
angular sector θ ! arcsin(ωcm/ω − 1) ≈ 25o bounded by the dotted
thin lines. Both atom (a, b) and mirror (c, d) oscillate along the
direction indicated by the horizontal dashed black line. The angular
distributions associated to different frequencies have been plotted
using different (arbitrary) scales in (a, b).

interface, is constituted of ground-state atoms oscillating in
phase along the direction â perpendicular to the interface.
Symmetry of translation parallel to the interface implies that
the two photons of a given pair have the same polarization and
satisfy the condition

â × (k1 + k2) = 0, (21)

in addition to energy conservation (14). Accordingly, we as-
sume that the emission amplitudes associated to different atoms
interfere destructively except for the propagation directions
satisfying (21), and for all directions when considering mixed
TE-TM pairs.

We now compute the angular spectra from Eq. (13) by
enforcing such symmetry conditions. Then, a given k1 and λ1
determines a single possibility for the accompanying photon
wave vector k2 and polarization λ2 = λ1. The resulting angular
distributions for TE and TM polarizations are sketched in
Figs. 3(a) and 3(b), respectively. We also show the angular
spectra for a perfectly reflecting plane surface in Figs. 3(c) (TE)
and 3(d) (TM) calculated in [36]. For frequencies in the upper
half interval ωcm/2 < ω ! ωcm, Eqs. (14) and (21) jointly
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Figure 1. Concept of space–time motion-induced DCE. An atomic array is externally driven by a
spatiotemporal modulation of their center-of-mass coordinates. Atoms oscillate along the z-direction
and are temporally dephased by a linear synthetic phase distribution F(R) = bx. The modulation
produces a traveling wave of ripples moving along the x-direction. Pairs of photons (red and green
arrows) are emitted with in-plane linear momentum adding up to the momentum kick b.

hgj|dj(t)|eji = ĥjdege�iwegt, (3)

where |gji is the ground state of atom j, |eji is an excited state, ĥ is a real unit vector
denoting the orientation of the jth dipole, and deg is the matrix element. Note that all atoms
have the same deg as we assume identical atoms and that we are not restricted to two-level
atoms.When the atoms are isotropic, the sum over orientations of any given atom gives
Âĥj

(hj)a(hj)b = dab. We consider that the atoms are sufficiently spaced within the array to
neglect multiple scattering of photons among different atoms, rendering the evolution of
different atoms identical irrespective of their location within the array. The electromagnetic
field in the interaction picture is then simply given by the free field that we expand in a set
of modes in the usual way:

E(R, t) = i Â
g

⇣ h̄wg

2e0V

⌘1/2
[Eg(R)age�iwgt

� E⇤
g(R)a†

geiwgt],

B(R, t) = Â
g

⇣ h̄
2e0Vwg

⌘1/2
[r⇥ Eg(R)age�iwgt +r⇥ E⇤

g(R)a†
geiwgt]. (4)

Here, V is a quantization volume, Eg(R) is the spatial mode, wg > 0 is the mode
frequency, and a†

g and ag are creation and annihilation operators of photons in mode g.
The specific choice of modes is determined by the symmetries of the synthetic phase, as we
discuss later in the paper.

2.2. Two-Photon Emission Rate
We assume that the initial state of the N-atom system plus electromagnetic field is all

of the identical atoms in their ground state and the field in vacuum, i.e., |y(0)i = |{g}; vaci,
where we denote |{g}i = |g1, g2, ..., gNi as the multi-atom ground state. The time-evolved
state in the interaction picture to second order in the dipolar couplings deg is
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solid angle and per unit time (see Appendix A for details):

d!MIE

d"k̂
= !0v

2
m

4c2
#(ωcm − ω0)

(
ωcm

ω0
− 1

)3

×
[

2
(

ω0

ωcm

)2

(k̂ · â)2 + (k̂ × â)2

]

. (4)

We have introduced the Heaviside function defined as #(x) =
1 if x ! 0 and #(x) = 0 if x < 0, as well as the unit vectors
k̂ and â along the directions of the photon emission and of the
atomic motion, respectively.

Equation (4) shows that the angular distribution receives
two separate contributions associated to the projections of
the wave vector parallel or perpendicular to the direction of
motion. For ωcm =

√
2ω0, these two projections contribute

with equal weights, yielding an isotropic radiation in this
case. When ωcm is smaller (larger) than

√
2ω0, the angular

distribution is maximum (minimum) along the direction of
motion. The radiation emitted by motion-induced excitation
can be highly anisotropic, as illustrated in Figs. 1(b) and 1(c).

We take a mechanical frequency barely higher than the
atomic transition frequency in Fig. 1(b). In this case, the
moving atom radiates nearly twice along the direction of
motion as compared to the orthogonal direction. In classical
electrodynamics, emission by an accelerated pointlike electric
dipole along the direction of motion is also possible [60].
However, no classical analogy is available when the frequency
scales for the atomic dipole fluctuations (ω0) and for the
external motion (ωcm) are comparable. On the other hand, when
ωcm ≫ ω0, the distribution illustrated by Fig. 1(c) approaches
a classical antennalike angular distribution. In this limit, the
slow dipole fluctuations may be neglected during the fast
center-of-mass oscillation. The resulting radiation pattern may
then be constructed by averaging the classical distribution over
all possible atomic dipole orientations. This is illustrated by the
inset of Fig. 1(c), which suggests that the radiation field can
be obtained by the superposition of the fields produced by the
oscillating point charges with opposite signs.

For a multilevel atom, Eq. (4) gives the contribution of each
possible transition to the total angular distribution. Since the
atomic excitation is accompanied by the emission of a single
photon, we can obtain the excitation rate !MIE for the transition
of frequency ω0 by integrating the right-hand side of (4) over
the solid angle:

!MIE

!0
= 2v2

m

3c2
#(ωcm − ω0)

(
1 + ω0

ωcm

)2(
ωcm

ω0
− 1

)3

. (5)

The excitation rate scales as (vm/c)2 [61] and is an increasing
function of the center-of-mass frequency ωcm. The frequency
dependence results in part from the density of field modes at
frequency ω = ωcm − ω0 to which the ground-state atom is
resonantly coupled through the atomic motion, given that the
atom ends up in an excited state [see Fig. 1(a)]. Indeed, the
larger the difference between ωcm and the ω0, the larger
the density of vacuum modes accessible for the coupling
through motion-induced excitation. Should the mechanical
frequency be smaller than the transition frequency, no resonant
process can take place to first order in the interaction. The
corresponding contribution then vanishes, as indicated by the

FIG. 2. (a) Energy-level diagram for the microscopic dynamical
Casimir effect showing the internal (ω0), external (ωcm), and photon
frequencies (ω1 and ω2). (b, c) DCE angular distributions for (b) TE
and (c) TM polarizations. The red (light gray), green (dashed line),
and blue (dark gray) correspond to photon frequencies ω = 0.01 ωcm,

0.5 ωcm, and 0.99 ωcm, respectively. The distributions are normalized
by the value at ω = ωcm along the direction of the external motion
(horizontal dotted line).

presence of the Heaviside function in (4) and (5). However,
photon emission through higher-order resonant processes may
still occur in this case, as discussed in the next section.

III. MICROSCOPIC DYNAMICAL CASIMIR EFFECT

In this section, we consider the microscopic DCE arising
from a ground-state atom undergoing a mechanical oscillation.
We assume that the external frequency is smaller than the
smallest atomic transition frequency. In this case, and differ-
ently from the previous section, only virtual atomic excitations
may occur up to second-order in the interaction [62], and the
atom stays in the ground state at all times, as illustrated by
Fig. 2(a). The atom-field interaction may then be described by
an effective Hamiltonian obtained from the standard dipolar
Hamiltonian through a unitary transformation [63]:

H rest
eff (r) = −1

2

∑

kλ

α(ωk)Ekλ(r) · E(r), (6)

written here for the instantaneous rest frame of the atom. In
(6), α(ω) stands for the atomic polarizability, given for freely
rotating atoms by a sum over all possible excited states [64]:

α(ω) = (2/3h̄)
∑

e

ωeg|⟨e|d(0)|g⟩|2
/(

ω2
eg − ω2). (7)

H rest
eff is quadratic in the electric field and thus leads to the

generation of photon pairs out of the vacuum state, as depicted
in Fig. 2(a) and discussed in detail below.

There are two main advantages in using Eq. (6) instead
of the more standard dipolar Hamiltonian (1). First, virtual
transitions are accounted for through the atomic polarizability
so that H rest

eff does not operate on the internal atomic degrees
of freedom—it simply acts on the Hilbert space associated
to the electromagnetic field. Second, the microscopic DCE is
obtained already to first order of perturbation theory, whereas
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Microscopic Dynamical Casimir Effect: Model

Two-level atom:

set in prescribed harmonic motion:

Classical treatment  
of the center-of-mass atomic position 

Atom initially in ground state

Microscopic dynamical Casimir effect: model



Oscillating two-level atom 

Two regimes

Motion-induced excitation

Microscopic Dynamical Casimir Effect

One-photon process

Two-photon process

 

Microscopic dynamical Casimir effect: model

Related problem: molecule 
moving on top of a grating 
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Coherent Radiation from Neutral Molecules Moving above a Grating

Alexey Belyanin,* Vitaly Kocharovsky, and Vladimir Kocharovsky
Physics Department and Institute for Quantum Studies, Texas A&M University, College Station, Texas 77843-4242
and Institute of Applied Physics, Russian Academy of Science, 46 Ulyanov Street, 603600 Nizhny Novgorod, Russia

Federico Capasso†
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(Received 17 August 2001; published 22 January 2002)

We predict and study the effect of parametric self-induced excitation of a molecule moving above the
dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates
the molecular transition frequency which results in a parametric instability of dipole oscillations even
from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically
neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which
a moving charge and its oscillating image create an oscillating dipole. We show that parametrically
excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.

DOI: 10.1103/PhysRevLett.88.053602 PACS numbers: 42.50.Gy, 32.80.Qk, 33.50.–j, 42.50.Md

Introduction.—The presence of conducting or dielectric
surfaces near an atom or a molecule modifies its properties
in a fundamental way, changing its radiation and back re-
action as well as the electromagnetic vacuum fluctuations,
and giving rise to a number of interesting effects; see, e.g.,
[1–11]. In particular, the atomic energy levels and the ra-
diative decay rate are changed. A boundary can alter also
the dynamics of atomic or molecular dipole oscillations.
Here we describe a new effect of the latter type.

The calculations of the level shifts for a molecule near a
perfectly conducting wall can be traced back to the papers
[4,5,12,13]. According to subsequent works [14–17]
(and in accordance with fluctuation-dissipation theorem),
this effect is due to the modification of both electro-
magnetic vacuum fluctuations and radiation reaction.
Note, however, that in the near zone R ø l0!p´1 the
influence of a boundary between two media with dielectric
constants ´1 and ´2 on a radiating dipole is dominated
by the radiation reaction, while the contribution from
vacuum fluctuations of the electromagnetic field is negli-
gible. This result has been obtained in [16] using the ideas
of separating the self-action and vacuum-fluctuation terms
developed in [15]; see [3] for the review. The leading
term in the self-action force is proportional to a large
factor "l0!R#3 and can be interpreted as a nonretarded
London–van-der-Waals interaction with an instantaneous
image dipole. Here l0 ! 2pc!v0 is the vacuum wave-
length of a given dipole transition with frequency v0, ´1
is the dielectric constant of the medium in which an atom
is located. This large factor originates from the near field

E!,k ! 2
"73 2 1#p0

!,k
16R3´1

, p0
!,k ! 7

p!,k"´1 2 ´2#
´1 1 ´2

,

(1)

created by a high-frequency image dipole p0 at the position
of a real dipole p. Here and below upper and lower signs

correspond to the dipoles oriented perpendicular "!# and
parallel "k# to the boundary.

There are a number of reasons why the dynamics of
molecular radiative transitions is modified in the presence
of boundaries. The effects that were identified and ob-
served include (i) changes in the spectral density of ra-
diated modes [3,8–10,18], (ii) location of an atom in the
nodes or maxima of resonant modes or in a nontransparent
medium, e.g., in a medium with negative dielectric con-
stant or in a photonic band structure, when the transition
frequency is inside the Bragg gap [19–21], (iii) phase shift
of the near field of a dipole due to dissipation in the neigh-
boring medium [22,23].

Additional possibilities to affect the molecular dynamics
arise when the dipoles are moving near the interface of
two media or inside a medium. A well-known example
is Cherenkov radiation of an oscillating dipole moving in
an anisotropic medium under the conditions of anomalous
Doppler effect which can lead to instability of the dipole
oscillations [24]. This instability is, however, very difficult
to realize since radiation in the directions corresponding to
the normal Doppler effect usually dominates.

In this paper, we investigate a new mechanism of
boundary-induced excitation of molecular transitions
which is realized when a molecule is moving close to
the dielectric or conducting medium with periodic grating.
In this case, the radiation reaction force acting on an oscil-
lating dipole moment of a given transition is mainly due
to the time-dependent London–van-der-Waals interaction
experienced by the molecule moving above a grating. It
is proportional to the instantaneous value of the dipole
moment with a proportionality coefficient being a periodic
function of time. Its modulation frequency n is equal to
the velocity of a molecule divided by the spatial period of
a grating. Such a modulated radiation reaction force rep-
resents a periodic perturbation of the transition frequency

053602-1 0031-9007!02!88(5)!053602(4)$20.00 © 2002 The American Physical Society 053602-1
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Dipole interaction for an atom at rest: 

Dipole operator
Electric field operator

Average atomic position

For a moving atom: electric field in the comoving frame  

Dipolar interaction for a moving atom:  

Röntgen term

v(t) =
dr(t)

dt

External velocity

Microscopic dynamical Casimir effect: model

̂V(r(t)) = − ̂d ⋅ Ê(r(t))

̂VR(r(t)) = ̂V(r(t)) − ̂d ⋅ v(t) × B̂(r(t))
Baxter, Babiker & Loudon 1993; Wilkens 1994 



Initial quantum state: 

How to describe the MDCE   
photon pair production?

Use 2nd-order perturbation with

Use 1st order perturbation with an effective field 
Hamiltonian [Passante, Power, Thirunamachandran, 1998]  

Microscopic dynamical Casimir effect: model

Dalvit & Kort-Kamp 2021

ground state polarizability
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1

̂VR(r(t)) = − ̂d ⋅ ( ̂E(r(t) + v(t) × B̂(r(t))

Ĥeff(r(t)) = −
α(0)

2
̂E′￼(r(t))2

Effective Hamiltonians from a systematic approach
A. S. Santos, P. H. Pereira, P. P. Abrantes, C. Farina, 
PAMN, and R. de Melo e Souza, Entropy  2024.



Field state (first-order perturbation):

Time-dependent perturbation theory/Fermi golden rule

Quadratic in the field operators  creation of photon pairs⟹

Microscopic dynamical Casimir effect: model
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α(0)

2
̂E′￼(r(t))2
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Transverse Electric (TE) Transverse Magnetic (TM)

Oscillation 
along n

Reference plane defined by the vectors (k, n)

Probability of emission obtained from
Probability to detect a photon along a given direction/polarization: 
	 	 	 	 	 	  sum over all possible idle photons!

Microscopic dynamical Casimir effect: model

Oscillation 
along n



Microscopic vs Macroscopic Dynamical Casimir Effect

11

Only 2-photon modes that fulfill this condition of transverse 
momentum conservation contribute significantly.

Constructive interference condition for a quasi continuous 
array of atoms with identical oscillations:

Sum contribution from a macroscopic collection of atoms:

We “impose” this condition to compare the prediction of 
our microscopic model with macroscopic results.

Microscopic dynamical Casimir effect

(k1 − k2) × n = 0n
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Angular spectra of atom/mirror:

Macroscopic DCE
PAMN, L. Machado,  Phys Rev. A (1996).  

Microscopic DCE

R. M. Souza, F Impens, PAMN,  Phys Rev. A (2018). 

Microscopic dynamical Casimir effect

D Dalvit, W Kort-Kamp, Universe (2021). 

Total photon emission rate

Look for 'dynamical Casimir - like' effects 
with atom interferometers probing the 
Casimir-Polder interaction with a surface…

dN
dt

=
23

5670π ( a0

rmax )
6

( vmax

c )
8

ωcm

α(0) = 4πϵ0 a3
0

vmax = ωcmrmax
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Shift of the 
atomic fringes

Atom-Surface interaction 
in the nano grating

tion of at least 106 g while passing through the grating.
Therefore, the vdW interaction is one of the most important
forces at the nanometer length scale.

The experiment consists of measuring shifts in the po-
sition of the interference pattern I!x" when G4 is moved in
and out of the interferometer paths. The interference data
are shown in Fig. 3. When G4 is placed in path ! the
fringes shift in the positive x direction, whereas placing G4
in path " causes a shift in the negative x direction.
Therefore the absolute sign of the phase shift is consistent
with an attractive force between the Na atoms and the walls
of grating G4. It is also observed that although the Na
atoms are passing within 25 nm of the grating the atom
waves retain their wavelike behavior (coherence), as evi-
dent by the nonzero contrast of the interference fringes.

The atom interferometer had a linear background phase
drift of approximately 2# rad=h and nonlinear excursions
of#1 rad over a period of 10 min, which were attributed to
thermally induced position drift of the interferometer grat-
ings G1; G2; G3 and phase instability of the vibration com-
pensating laser interferometer. The data were taken by
alternating between test (G4 in path ! or ") and control
(G4 out of the interferometer) conditions with a period of
50 s, so that the background phase drift was nearly linear
between data collection cycles. A fifth order polynomial
was fit to the phase time series for the control cases and
then subtracted from the test and control data. All of the
interference data were corrected in this way.

Grating G4 had to be prepared so that it was possible to
obscure the test arm of the interferometer while leaving the
reference arm unaffected. The grating is surrounded by a
silicon frame, making it necessary to perforate G4. A
scanning electron microscope image of G4 after it has
been perforated can be found in [16]. The grating bars
themselves are stabilized by 1 $m period support bars
running along the direction of kg as described in [13,14].
The grating naturally fractured along these support struc-
tures after applying pressure with a drawn glass capillary
tube. Using this preparation technique, G4 had a transition
from intact grating to gap over a distance of about 3 $m,
easily fitting inside our interferometer, which has a path
separation of about 80 $m for atoms traveling at 2 km=s.

Because of the preparation technique, G4 was inserted
into the test arm with kg orthogonal to the plane of the
interferometer. This causes diffraction of the test arm out
of the plane of the interferometer, in addition to the zeroth
order. However, the diffracted beams have an additional
path length of approximately 2 nm due to geometry. Since
our atom beam source has a coherence length of
!v=%v"&dB $ 0:1 nm, the interference caused by the dif-
fracted beams will have negligible contrast. Therefore, the
zeroth order of G4 will be the only significant contribution
to the interference signal.

In principle, the amount of phase shift !0 induced by the
vdW interaction should depend on how long the atom
spends near the surface of the grating bars. Therefore the
observed phase shift produced by placing G4 in one of the
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FIG. 3. Interference pattern observed when the grating G4 is
inserted into path ! or " of the atom interferometer. Each
interference pattern represents 5 s of data. The intensity error
bars are arrived at by assuming Poisson statistics for the number
of detected atoms. The dashed line in the plots is a visual aid to
help illustrate the measured phase shift of 0.3 rad. Notice how
the phase shift induced by placing G4 in path ! or " has opposite
sign. The sign of the phase shift is also consistent with the atom
experiencing an attractive potential as it passes through G4.
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FIG. 4. Phase shift !0 induced by grating G4 for various atom
beam velocities. The phase shift data have been corrected for
systematic offsets (#30%) caused by the interference of other
diffraction orders and beam overlap in the atom interferometer,
and the error bars reflect the uncertainty in the systematic
parameters. The solid line is a prediction of the induced phase
shift for vdW coefficient C3 $ 3 meV nm3, grating thickness
150 nm, and grating open fraction 0.5. The data agree in
magnitude with the prediction and reproduce the slight trend
of decreasing phase shift with increasing velocity.
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 n ! Anei!n ! ei!o

Z w=2

"w=2
ei"!##$ei2$#n=dd#; (2)

where An and !n are real numbers, and n is the diffraction
order number [8]. For n ! 0 the second exponential in the
integrand is unity, and to leading order in !##$, !0 %
h!##$i is the average phase over the grating window.
Experiments which measure the intensity of atom waves
(e.g., atom wave diffraction) are only sensitive to j nj2 !
jAnj2, which is in part influenced by "!##$. However, it is
clear from Eq. (2) that j nj2 reveals no information about
!o or !n. We have determined A0 and !0 by placing this
array of cavities (grating) in one arm of an atom interfer-
ometer. This new technique is sensitive to the entire phase
shift !##$ induced by an atom-surface interaction, includ-
ing the constant offset !o.

The experimental setup for using an atom interferometer
to measure the phase shift !0 induced by atom-surface
interactions is shown in Fig. 2. The atom interferometer
used is similar to the type described in [13] and described
here briefly. A beam of Na atoms traveling at v ! 2 km=s
(%dB ! 0:08 "A) is generated from an oven, and a position
state of the atom wave is selected by two 10 &m collima-
tion slits spaced 1 m apart. A Mach-Zehnder–type inter-
ferometer is formed using the zeroth and first order
diffracted beams from three 100 nm period silicon nitride
gratings [14]. The three gratings G1; G2; G3 are spaced 1 m
from each other and produce a first order diffraction angle
of about 80 &rad for 2 km=s sodium atoms. The grating
G1 creates a superposition of position states j'i and j(i
which propagate along separated paths ' and (, respec-
tively. The states are then recombined using gratingG2 and

form a spatial interference pattern I#x$, with a 100 nm
period, at the plane of G3. The phase and contrast of the
interference pattern are measured by scanning G3 in the x
direction with a piezoelectric stage and counting the trans-
mitted atoms with a detector. The detector ionizes the
transmitted atoms with a 60 &m diameter hot Re wire,
and then counts the ions with a channel electron multiplier.
A copropagating laser interferometer (not shown in Fig. 2)
was used to monitor the positions of G1; G2; G3 and to
compensate for mechanical vibrations. Since the optical
interference fringe period is # ! 3 &m, relative uncer-
tainty in the optical interferometer output intensity of
$I=I & 2$$x=# ! 1=1000 permits nanometer resolution
in the position of G3.

When grating G4 is inserted into the interferometer path
', the interference pattern I#x$ shifts in space along the
positive x direction. This can be understood by recalling
de Broglie’s relation %dB ! h=p [15]. The atoms are sped
up by the attractive vdW interaction between the Na atoms
and the walls of grating G4. This causes %dB to be smaller
in the region of G4, compressing the atom wave phase
fronts and retarding the phase of beam j'i as it propagates
along path '. One could also say that G4 effectively
increases the optical path length of path '. At G3 the
beams j'i and j(i then have a relative phase between
them leading to the state

j)i ! A0ei!0 j'i' eikgxj(i; (3)

where kg ! 2$=d is the grating wave number and d is the
grating period. The diffraction amplitude A0 reflects the
fact that beam j'i is also attenuated by G4. The state j)i in
Eq. (3) leads to an interference pattern which is shifted in
space by an amount that depends on !0:

I#x$ ! h)j)i / 1' C cos#kgx"!0$; (4)

whereC is the contrast of the interference pattern. Inserting
G4 into path ( will result in the same form of the interfer-
ence pattern in Eq. (4), but with a phase shift of the
opposite sign (i.e., !0 ! "!0).

Grating G4 is an array of cavities 50 nm wide and
150 nm long which cause a potential well for the Na atoms
due to the vdW interaction. Atoms transmitted through G4
must pass within 25 nm of the silicon nitride cavity walls
since the open slots of the grating are 50 nm wide. At this
atom-surface distance the depth of the potential well is
about 4( 10"7 eV. Therefore, as the atoms enter the
grating they are accelerated by the vdW interaction from
2000 m=s to at least 2000:001 m=s (depending on #) and
decelerated back to 2000 m=s as they leave the grating.
This small change in velocity is enough to cause a phase
shift of !0 ! 0:3 rad according to Eqs. (1) and (2), which
corresponds to a 5 nm displacement of the interference
pattern in the far field. It is quite remarkable to note that the
acceleration and deceleration happens over a time period
of 75 ps, implying that the atoms experience an accelera-

atom
beam

G1 G2 G3

G4

x

I(x)
detector

eikgx

A0eiΦ0

eikgx|α>

|β>

|α>

|β>
1 m 1 m

FIG. 2. Experimental setup for vdW induced phase measure-
ment. A Mach-Zhender atom interferometer with paths ' and (
is formed using the zeroth and first order diffracted beams of
gratings G1 and G2 which have a period of 100 nm. The atom
wave interference pattern I#x$ is read out using grating G3 as an
amplitude mask. The phase fronts (groups of parallel lines)
passing through grating G4 are compressed due to the attractive
vdW interaction, resulting in a phase shift !0 of beam j'i
relative to j(i. This causes the interference pattern I#x$ to shift
in space at the plane defined by G3.
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Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

John D. Perreault and Alexander D. Cronin
University of Arizona, Tucson, Arizona 85721, USA

(Received 29 March 2005; published 19 September 2005)

The development of nanotechnology and atom optics relies on understanding how atoms behave and
interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a
corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an
atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm
wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift
caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted
by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that
atom waves can retain their coherence even when atom-surface distances are as small as 10 nm.

DOI: 10.1103/PhysRevLett.95.133201 PACS numbers: 34.50.Dy, 03.75.Dg, 34.20.Cf, 42.30.Kq

The generally accepted picture of the electromagnetic
vacuum suggests that there is no such thing as empty space.
Quantum electrodynamics tells us that even in the absence
of any free charges or radiation the vacuum is actually
permeated by fluctuating electromagnetic fields. An im-
portant physical consequence of this view is that the fluc-
tuating fields can polarize atoms resulting in a long range
attractive force between electrically neutral matter: the
van der Waals (vdW) interaction [1]. This microscopic
force is believed to be responsible for the cohesion of
nonpolar liquids, the latent heat of many materials, and
deviations from the ideal gas law. The polarized atoms can
also interact with their electrical image in a surface, result-
ing in an atom-surface vdW force [2]. For example, nearby
surfaces can distort the radial symmetry of carbon nano-
tubes [3] and deflect the probes of atomic force micro-
scopes [4]. Atom-surface interactions can also be a source
of quantum decoherence or uncontrolled phase shifts,
which are important considerations when building practi-
cal atom interferometers on a chip [5]. For the case of an
atom near a surface the vdW potential takes the form
V!r" # $C3r$3, where C3 describes the strength of the
interaction and r is the atom-surface distance [1]. This
form of the vdW potential is valid in the limit of atom-
surface distances smaller than the principle transition
wavelength of the atoms, typically &1 !m.

Previous experiments have shown how atom-surface
interactions affect the intensity of atom waves transmitted
through cavities [6], diffracted from material gratings
[7,8], and reflected from surfaces [9]. However, as we shall
see, none of these experiments provide a complete charac-
terization of how atom-surface interactions alter the phase
of atom waves. In order to monitor the phase of an atom
wave, one must have access to the wave function itself ( ),
not just the probability density for atoms (j j2). In this
Letter an atom interferometer is used to directly observe
how atom-surface interactions affect the phase of atom
waves, as proposed in [10]. This observation is significant
because it offers a new measurement technique for the

vdW potential and is of practical interest when designing
atom optics components on a chip [11,12].

When an atom wave propagates through a cavity, it
accumulates a spatially varying phase due to its interaction
with the cavity walls, given by the WKB approximation

"!#" % "o & $"!#" # $
lV!#"
@v ; (1)

where # is the position in the cavity, l is the interaction
length, V!#" is the atom-surface potential within the cavity,
@ is Planck’s constant, and v is the particle velocity [8].
Equation (1) also separates the induced phase "!#" into
constant "o and spatially varying $"!#" parts. A plot of
the phase "!#" from Eq. (1) is shown in Fig. 1 for the
cavity geometry and vdW interaction strength in our ex-
periment. If these cavities have a width w and are oriented
in an array with spacing d, then the atom wave in the far
field will have spatially separated components (diffraction
orders) with complex amplitudes
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FIG. 1. Accumulated phase "!#" of an atom wave as a func-
tion of cavity position # due to a vdW interaction with C3 #
3 meV nm3. The atom wave has propagated through a 150 nm
long cavity at a velocity of 2 km=s. The gray rectangles indicate
the location of the cavity walls which are 50 nm apart. Notice
how there is a nonzero constant phase offset "o ' 0:05 rad.
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gap width = 50 nm

In both paths, atom remains in 
the internal ground state
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Abstract. Using a nano-scale grid as a phase-shifting component, an atom interferometer has been utilized
to study atom-surface van der Waals (VdW) interactions. We report phase shifts on the order of 0.2 rad,
with a few percent uncertainty. We also report the velocity-dependent attenuation of atomic de Broglie
wave amplitude that occurs in conjunction with the observed phase shifts. From these data we deduce the
strength of the VdW potential and its dependence on the atom-surface separation. We discuss how our
measurements can be used to set limits on the strength of non-Newtonian gravity at short length scales and
we discuss the possibility of measuring the atom-surface interactions over a larger range of atom-surface
distances. We also compare our results to several theoretical predictions for the VdW potential of Li near
a variety of surfaces.

1 Introduction

Diffraction of atoms by nano gratings has attracted at-
tention recently because the diffraction amplitudes are
sensitive to atom-surface van der Waals (VdW) interac-
tions. In references [1–8] the relative intensities of several
diffraction orders were studied, whereas in references [9,10]
atom interferometers were used to measure the additional
phase induced by a nano-grating. In this paper we show
how both the modulus and the phase of the zeroth order
diffraction amplitude can be reported from a single ex-
periment. We used these data to measure the strength of
the VdW potential at different atom-surface separations
and to set experimental limits on possible Yukawa-type
modification of Newtonian gravity at short length scales.

With a separated beam atom interferometer [11],
almost any type of perturbation can be measured by trans-
mitting one arm of the interferometer through an interac-
tion region while the reference arm propagates freely. The
modulus and the phase of the transmission amplitude can
be determined from the interference signals. A variety of
such experiments have already been done: atomic elec-
tric polarizabilities have been measured with interaction
regions containing an electric field [12–14], complex scat-
tering amplitudes have been measured with an interaction
region containing a dilute gas [15–17], and in this paper
we describe an experiment where one arm of the inter-
ferometer passes through a nanostructure. The resulting
interaction depends on the atom-surface van der Waals
potential [9,10].

a e-mail: jacques.vigue@irsamc.ups-tlse.fr

Several previous experimental techniques have been
used to measure atom-surface interactions. The study of
the short-range (r < 1 nm, where r is the atom-surface dis-
tance) part of atom-surface interaction is well developed,
the detection of atom-surface bound states by inelastic
scattering experiments can give very accurate measure-
ments and we refer the reader to the review paper by
Hoinkes [18] for more details. However, inelastic scatter-
ing experiments do not give a direct access to the long
range part of this interaction (r > 1 nm). In this range,
atom-surface interaction is attractive and dominated by
the dipole-dipole term, which behaves as −C3/r3. Such a
potential may support a series of long-range bound states
which are difficult to detect because of insufficient reso-
lution and sensitivity. Laser spectroscopy of atoms inter-
acting with a dielectric surface has already given access
to the long-range part of the atom-surface interaction [19]
but this spectroscopy is sensitive only to the difference of
the interaction potentials corresponding to the different
internal states of the atom that are coupled by the laser.

Atom optics experiments, such as atom diffraction
from a nano grating, can be used to measure the long-
range interaction of the atom in its ground state with
the surface. The first experiment of this type was done in
1999 by Grisenti et al. [1], who measured the intensities of
the various diffraction orders of a nano grating as a func-
tion of the atom velocity. Several similar experiments have
been performed since then [4–6,8]. These experiments give
access to the modulus of the diffraction amplitude but not
to its phase which can be measured only by atom interfer-
ometry; this was done for the first time by Perreault and
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Intermediate-Range Casimir-Polder Interaction Probed
by High-Order Slow Atom Diffraction
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At nanometer separation, the dominant interaction between an atom and a material surface is the
fluctuation-induced Casimir–Polder potential. We demonstrate that slow atoms crossing a silicon nitride
transmission nanograting are a remarkably sensitive probe for that potential. A 15% difference between
nonretarded (van der Waals) and retarded Casimir–Polder potentials is discernible at distances smaller than
51 nm. We discuss the relative influence of various theoretical and experimental parameters on the potential
in detail. Our work paves the way to high-precision measurement of the Casimir–Polder potential as a
prerequisite for understanding fundamental physics and its relevance to applications in quantum-enhanced
sensing.

DOI: 10.1103/PhysRevLett.127.170402

The Casimir–Polder (CP) interaction between an atom or
molecule and polarizable matter [1] has been intensively
studied theoretically as a fundamental electromagnetic
dispersion force [2,3]. It originates from quantum fluctua-
tions of the electromagnetic field that spontaneously polar-
izes otherwise neutral objects. Interaction strength and
spatial dependence are the result of a unique combination
of atom species, internal atomic state and material proper-
ties and geometry. The Casimir–Polder interaction is part
of a larger family of fluctuation-induced electromagnetic
forces that also include the well-known Casimir force [4]
that has been studied, e.g., between a metallic sphere and a
nanostructured surface [5,6]. Historically, and rather con-
fusingly, the nonretarded regime with UvdWðzÞ ¼ −C3=z3

is sometimes called the van der Waals (vdW) potential
in order to distinguish it from the retarded (or Casimir-
Polder) regime, which asymptotically converges to
UretðzÞ ¼ −C4=z4 at a large distance from the surface z.
In the current usage, the Casimir-Polder interaction con-
sistently refers to the dispersion interaction between a
microscopic (atom or molecule) and a macroscopic object
independent of the distance regime.
Pioneering work with Rydberg atoms [7] predominantly

probed the nonretarded regime even at atom-surface dis-
tances as large as 1 μm due to major contributions from
atomic transitions in the mid-IR. On the other hand, when
the atomic transitions are in visible or near UV regions—
such as for atoms in their ground states—the atom-surface
interaction will be in the CP regime. This scenario is
relevant for ground-state atomic beams [8], cold atoms near
atomic mirrors [9], and quantum reflection [10]. Very few
experiments thus far have studied the crossover regime
where neither limit holds, typically using an adjustable

repulsive dipolar force [11]. Studying atom-surface inter-
actions with reasonable accuracy is of major importance as
these fundamental fluctuation-induced interactions have
not been yet measured with an accuracy better than 5–10%
whatever the experimental approach.
In this Letter, we present our experimental and theoretical

investigations of matter-wave diffraction of metastable argon
atoms by a transmission nanograting at atom-surface dis-
tances below 51 nm. The geometric constraint on the atom-
surface distance provided by the two adjacent walls is a
major asset that eliminates the quasi-infinite open space over
a single surface, similar to an ultrathin vapor cell [12]. Atom-
surface interactions have previously been studied using
transmission nanogratings with atoms at thermal velocities
[13,14]. This Letter shows that lowering the atomic beam
velocity below 26 ms−1 opens up new experimental oppor-
tunities due to larger interaction times, and produces
diffraction spectra dominated by the atom-surface interaction
[15]. The precise control of nanograting geometry and
experimental parameters related to the atom beam leads
us to observe the minute influence of retardation. This paves
the way to accurate CP potential measurements that can be
compared against detailed theoretical models.
Transmission gratings etched into a 100 nm thick silicon

nitride (Si3N4) membrane are commonly made using ach-
romatic interferometric lithography [16] using UV light,
resulting in gratings with pitch down to 100 nm covering
areas of several mm2. For its versatility in nanograting
design, we chose electron beam lithography to pattern a new
generation of resists with high selectivity during etching and
low line edge roughness [17]. A 200 nm-period transmission
nanograting has been fabricated on a 100 nm thick mem-
brane of 1 × 1 mm2 in size. The combination of 100 keV
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respectively. In general, for matter waves propagating
through a transmission grating, the diffraction spectrum
envelope is determined by the wavelength and the single
slit width, while the interference peak visibility stems from
the transverse coherence length of the source. In the present
situation, the nanograting slit width effectively narrows
due to atoms that are close enough to a surface being
mechanically attracted and deflected by the Casimir–Polder
potential. Metastable atoms colliding with the surface at
room temperature are scattered randomly at high velocity,
and will return to their ground state [23].
For atoms at thermal velocities, the region near the

surfaces the atoms needed to avoid was assumed to be a few
nanometers [13,14]. Using classical trajectories, we can
estimate a lower limit for the distance at which the atoms
can pass the nanobars to be d0 ¼ 16.2ð14.2Þ nm at a beam
velocity of 19.1 ð26.2Þ ms−1 or, equivalently, an effective
slit width ofWeff ¼ 70.3ð74.3Þ nm. Such a major reduction
cannot be neglected when explaining experimental diffrac-
tion spectra (2λdB=Weff ¼ 14 mrad at 19.1 ms−1). The

effective slit width and the exerted CP forces elsewhere
in the grating explain the overall broadening of the
spectra compared with an equivalent optical picture with
first zeros at 5 mrad. The fringe visibility depends only on
the transverse coherence length of the atomic beam,
Lc ¼ λdBL1=a, with a the diameter of the incoherent
source, as given by the van Cittert–Zernike theorem
[24]. However, the quadratic dispersion relation for matter
waves suppresses the dephasing compared with light [25],
and hence enlarges Lc. From the cloud size in the MOT,
a ¼ 330$ 40 μm, followed by thermal expansion, one
finds Lc ¼ 560$ 45 (380$ 30) nm at 19.1 ð26.2Þ ms−1

beam velocity.
The Huygens-Kirchhoff principle can be utilized for

atoms propagating in a potential that is small compared
with their kinetic energy [26,27]. This can be justified
with the help of the effective slit approximation, which
removes atoms with potential energies that are too large.
Additionally, the detection in the far field validates the
Fraunhofer approximation (x ≫ W2

eff=λdB), in which the
diffraction pattern results from the sum of wave path
differences at the nanograting output. The CP potential
is included in the wave propagation as an additional phase
ΦCPðzÞ that depends on the atom-surface distance inside the
nanograting slit z. In short, the total phase can be written as
Fðz; θÞ ¼ kz sin θ þΦCPðzÞ for a detection angle θ and a
wave number k. The incoming Gaussian wave packets have
a standard deviation σcoh ¼ Lc=2 [28,29]. The experimen-
tal value for Lc covers up to seven slits coherently and
hence, the beam cannot be considered as a plane wave. The
diffraction intensity then reads as

IðθÞ ¼
!!!!
X

slits

Z

Weff

exp ½iFðz0; θÞ' exp
"
−

z02

2σ2coh

#
dz0

!!!!
2

:

ð1Þ

In eikonal approximation, the phase shift imprinted by a
potential UCPðzÞ is the integral of the potential along the
particle trajectory [30]. Neglecting the surface potential
outside the grating, one finds

ΦCPðzÞ ¼ −
1

ℏv

Z
L

0
UCPðx; zÞdx ð2Þ

where L ¼ 100 nm is the nanograting depth and v the
beam velocity. However, it is necessary to account for the
exact shape of the grating along the x axis, because the slit
widths increase near the output. We incorporate this effect
by using a smaller slit thickness of Leff ¼ 95 nm.
In pioneering experiments with nanogratings and super-

sonic beams [13,31], the CP potential is modeled in the
nonretarded regime as UvdWðzÞ ¼ −Cnr

3 =z
3 for the two

adjacent surfaces. Semi-infinite surfaces are implicitly
considered everywhere inside the grating even if this is
not correct near the edges. Further, the effect of multiple

FIG. 2. Experimental diffraction spectra for beam velocities of
26 ms−1 (top) and 19.1 ms−1 (bottom) in black. The red curves
are theoretical spectra with a single adjustable parameter (d0).
The insets show individual diffraction orders. Black dots result
from experimental spectra averaged over positive and negative
diffraction orders. Red (blue) curves are calculated with CP
(vdW) potentials.
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Casimir atom interferometry 
in the quasi-static limit

Casimir atomic phase in the quasi-static limit

Dispersive potential  
(e.g. van der Waals potential)

John D. Perreault and Alexander D. Cronin, PRL 95, 133201 (2005);  
S. Lepoutre et al., EPL 88, 20002 (2009); S. Lepoutre et al. , EPJD 62, 309 
(2011) 
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Local Dynamical Casimir-like phase:

Quasi-static Casimir phase:

Full Casimir phase (including atomic motion):

Coarse-Grained Potential:

All atomic positions during the photon 
exchange taken into account!

Virtual photon exchange duration

Round trip in 

local Casimir atomic phase  



interferometer: self-interaction also with a 
different wave-packet component

atom-surface van der Waals 
interaction:  

fluctuating dipole interacts with its 
own field, after reflection by 

surface 

F Impens, R Behunin, C Ccapa-Ttira and PAMN, EPL 2013

non-local Casimir atomic phase  



• Atomic phases are normally local 

• Phase non-locality emerges as a dynamical-like Casimir effect 

 

20

non-local Casimir atomic phase  

Path 1

Path 2



Casimir atomic phases beyond the quasi-static limit

Interaction Hamiltonian:

Neutral atoms with no permanent dipole:

Initial (produc) state:

Dipole operator Electric field operator
(external) atomic position operator

̂V(r(t)) = − ̂d ⋅ Ê( ̂r(t))

|Ψ⟩t=0 =
1

2
( |ψ1⟩0 + |ψ2⟩0) ⊗ |ψA⟩0 ⊗ |ψF⟩0

State at time t

|Ψ⟩t =
1

2 ( |ψ1⟩t ⊗ 𝒯 exp (−
i
ℏ ∫

t

0
dt′￼

̂V(r1(t′￼), t′￼)) |ψA⟩0 ⊗ |ψF⟩0 + |ψ2⟩t ⊗ 𝒯 exp (−
i
ℏ ∫

t

0
dt′￼

̂V(r2(t′￼), t′￼)) |ψA⟩0 ⊗ |ψF⟩0)
{external

{

internal

{

field

Time-ordering operator

non-local Casimir atomic phase  



Casimir atomic phases beyond the quasi-static limit

Anti time-ordering operator Time-ordering operator

Reduced density operator for the external degree of freedom ρ = TrAF( |Ψ⟩⟨Ψ | )
Coherence multiplied by 

Complex phase  has a positive imagine part (entaglement with environment/decoherence) 

Real part of  is the interferometric phase 

Δϕ12

Δϕ12

non-local Casimir atomic phase  



Casimir atomic phases beyond the quasi-static limit

Anti time-ordering operator Time-ordering operator

Casimir phase obtained by picking up two interactions (2nd-order diagram)

Two possibilities: Pick-up 2 interactions on the same path (->Local Casimir phases) 
                                Pick up 2 interactions on two distinct paths (-> Nonlocal Casimir phases)   

Reduced density operator for the external degree of freedom ρ = TrAF( |Ψ⟩⟨Ψ | )
Coherence multiplied by 

non-local Casimir atomic phase  



Local Casimir atomic phases

Local Casimir phases obtained by 
picking up two interactions on 
the same path

non-local Casimir atomic phase  

Contains the standard quasi-
static phase reported in several 
experiments

r1(t)



Nonlocal Casimir phases obtained by picking up two interactions on distinct paths

Vanishes in the quasi-static limit 
(but survives when accounting for  
the atomic motion) 

Dynamical Casimir-like effect!

non-local Casimir atomic phase  
r1(t)
r2(t)



Nonlocal phasesLocal phases

Retarded Green’s functions= susceptibility functions

Hadamard Green’s functions= source of quantum fluctuations

Dipole fluctuations Electric field fluctuations

non-local Casimir atomic phase  



Path 1

Path 2

Path 1

Path 2

difference between diagrams arises from the motion normal to the surface

Duration of the virtual photon exchange
Retarded time
Current time

non-local Casimir atomic phase  



Two diagrams with the ”image 
method”

Single 2-level atom in 
a coherent superposition 
of two wave-packets

Surface

Geometric phase!
Phase invariant under time rescaling
Changes sign with reversed propagation: 

Atomic polarizability

FI, R. O. Behunin, Claudio Ccapa Ttira and Paulo A. Maia Neto, EPL, 101 60006 (2013); J. Phys B 46 245503 (2013);  
For a review: FI, R. de Melo e Souza, G. C. Matos, EPL (2022).    
  

Transition frequency

non-local Casimir atomic phase  
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 Microscopic Dynamical Casimir Effect 
 Geometric and non-local Casimir atomic 

phases  
 Quantum Sagnac Effect 

Outline



GHz rotation of optically trapped nanoparticles

Opportunity to probe dynamical Casimir effects….?
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Sagnac Effect with Light/Atomic Waves

Sagnac effect (1913):

Beam 
Splitter

Ω
Output beam 

Light  
Beam

Phase difference between the two interferometers arms 
proportional to the angular rotation frequency Ω and to the enclosed area

Inertial navigation systems in aircrafts

(Ch. Bordé 1989, Bouyer&Kasevich 1998)

Unified expression for Sagnac Phase 
for atomic/light waves:

Sagnac Effect for atomic waves:

Area A

(87Rb)

Aplications:

Stronger non-inertial effect for atomic waves!

Georges Sagnac  
(Fonte:Alchetron)



Sagnac Atom Interferometer

Rotating frame

Ex: embarked atom interferometer



Inertial frame and rotating conductor

Sagnac effect in an inertial frame?



An alternative point-of-view: an Aharonov-Bohm-like effect

Coriolis Force:

Lorentz Force:

Rotation of a body 
in an inertial frame

Effective magnetic field 
 confined to the body

Trace of the rotation??
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Quantum Sagnac phase near a spinning particle

Casimir phase:

What are the electric-field Green’s function in presence of a spinning body?

Spinning 
nano-particle

a magnetic field confined to a solenoid imprints a phase in a
region free of magnetic fields. Here, we show that a rotation
confined to a domain of space imprints a phase on matter
waves probing quantum vacuum fluctuations outside the
rotating region.
For simplicity, we consider a nanoparticle rotating around

an axis of symmetry with constant angular velocity Ω. In
this case, the modification of the surrounding quantum field
arises from the frequency dependence of the particle
dielectric constant. We consider a two-level atom in the
ground state interactingwith the quantum vacuum field. The
atomCM is in a quantum superposition of twowave packets
that propagate in the vicinity of the spinning nanoparticle as
indicated in Fig. 1. We show that the resulting QVSP is
geometric, i.e., independent of the atomic velocity [48,49]
in the limiting case of very narrow wave packets.
Furthermore, we express the QVSP as the circulation of
a geometric vector field, analog to the vector potential in the
Aharonov-Bohm effect, along the interferometer paths. The
effect can be enhanced by considering nanoparticles with a
plasmon resonance [50] in order to optimize the material
dispersion at the atomic transition frequency.
Motional van der Waals (vdW) atomic phase.—We

consider a moving atom interacting with the rotating nano-
particle between the initial and final times t ¼∓ T=2. The
atomic waves acquire a phase associated with the dipolar
interaction Ĥdip ¼ −d̂ · Ê, with d̂ representing the atomic
dipole moment operator. The electric field operator Ê is
taken at the instantaneous average atomic position rkðtÞ ¼
hr̂ðtÞik for each wave packet k. We evaluate the phase
difference Δϕ12 accumulated by the coherent superposition
state of two narrow atomic wave packets following the two
distinct paths P1 ¼ ½r1ðtÞ%, P2 ¼ ½r2ðtÞ%. Up to second
order in perturbation theory, this phase difference reads [29]

Δϕ12 ¼ φ11 − φ22 þ φ12 − φ21; ð1Þ

φkl ¼
1

4

ZZ
T=2

−T=2
dtdt0fgH

d̂
ðt; t0ÞGR;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%

þ gR
d̂
ðt; t0ÞGH;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%g: ð2Þ

The contributions φkl for k ¼ l and k ≠ l correspond to
local and nonlocal phases, respectively. In the concrete
applications discussed later on, the local phases ϕk ≡ φkk
will play a more important role. We have used the trace of
the retarded Green’s function for the scattered electric field
GR;S
Ê

ðr; t; r0; t0Þ ¼ Tr½GR;S
Ê

ðr; t; r0; t0Þ%, which captures how
electrodynamical propagation is modified by the presence
of the nanoparticle (scatterer) placed at the origin. Likewise,
the trace GH;S

Ê
of the Hadamard Green’s function represents

the change in the field fluctuations induced by the presence
of the nanoparticle. The retarded Green’s function of a
vectorial operator ÔðtÞ is defined as the averaged commu-
tatorGR

Ô ij
ðt; t0Þ ¼ ði=ℏÞΘðt − t0Þh½ÔiðtÞ; Ôjðt0Þ%iwithΘðτÞ

denoting the Heaviside function. The Hadamard Green’s
function corresponds to the average value of the anticom-
mutator GH

Ô ij
ðt; t0Þ ¼ ð1=ℏÞhfÔiðtÞ; Ôjðt0Þgi.

The first term on the rhs of (2) accounts for the electric
field response to dipole fluctuations, while the second one
corresponds to the dipole response to vacuum fluctuations
modified by the presence of the nanoparticle. The dipole
Hadamard Green’s function is isotropic and has the
analytical form gH

d̂ ij
ðt; t0Þ ¼ αA0ω0 cosω0ðt − t0Þδij for a

two-level model. Here, αA0 represents the static polariz-
ability and ω0 is the transition frequency. We focus on the
nonretarded vdW regime, for which the atom-particle
distance rðtÞ is much smaller than the transition wavelength
λ0 ¼ 2πc=ω0. As shown below, the QVSP is maximized in
the immediate vicinity of the rotating nanoparticle, which
turns the vdW regime more interesting for experimental
implementations.
We now consider the retarded Green’s function for the

scattered electric field GR;ðSÞ
Ê ij

ðr; t; r0; t0Þ. This function

corresponds to the ith component of the electric field at
position r and time t induced by an instantaneous point
dipole oriented along the jth direction at position r0 and
time t0 after scattering at the nanoparticle at some inter-
mediate time t00 such that t0 < t00 < t. From now on, we
assume that the nanoparticle is very small and neglect
multipolar contributions beyond the electric dipolar one.
The retarded Green’s function in the frequency domain can
then be expressed in terms of the electric polarizability
tensor αΩðωÞ of the rotating nanoparticle as

GR;S
Ê

ðr; r0;ωÞ ¼ G0ðr; 0;ωÞ · αΩðωÞ · G0ð0; r0;ωÞ: ð3Þ

The free-space retarded Green’s function for the electric
field becomes frequency independent [51] G0

ijðr;r0;ωÞ≈
ð3RiRj=R2−δijÞ=ð4πϵ0R3Þ in the nonretarded vdW regime
(R¼r−r0). In the absence of rotation, any direction
orthogonal to the symmetry axis of the nanoparticle is a
principle axis of the polarizability tensor α0ðωÞ with an
eigenvalue denoted by α̃ðωÞ. Rotation around the symmetry

path 1

path 2

FIG. 1. Scheme of the quantum vacuum Sagnac interferometer.
The center of mass of a ground-state atom propagates as a
quantum superposition of two wave packets around a spinning
neutral nanoparticle (angular frequency Ω).

PHYSICAL REVIEW LETTERS 127, 270401 (2021)
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Scattered electric field Green’s functions

Scattering object 

Retarded field Green’s function  
= Response to the dipole excitation

Scattered field Green’s function:

Object at origin Instantaneous 
dipole excitation

Induced 
dipole

Object 
Polarizability tensor 

Free electric field 
Green functions 

Dipole approximation 

E(r, t)

d(t′￼)
r′￼

E(r, t)

d(t′￼)

r

r′￼

r
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Polarizability tensor of a spinning nano-particle?
A. Manjavacas e F. J. García de Abajo, Phys Rev. A 82,063827 (2010).

Switch from sphere frame / inertial frame
Dipole response obtained in the sphere frame.

Leading non-relativistic order

Antisymmetric  
Levi-Civitta tensorRotating spherical 

nanosphere in the 
dipole approximation

Requires dispersion!

= Polarizability of the sphere at rest 

Polarizability induced by the rotation:
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G. C. Matos, Reinaldo de Melo e Souza,  
PAMN, and F Impens,  
Phys. Rev. Lett. 127, 270401 (2021). 

Quantum Sagnac phase
Local Sagnac phase:

Local Quantum Sagnac phase in the limit

Real part of the spherical particle polarizability

= static atomic polarizability

a magnetic field confined to a solenoid imprints a phase in a
region free of magnetic fields. Here, we show that a rotation
confined to a domain of space imprints a phase on matter
waves probing quantum vacuum fluctuations outside the
rotating region.
For simplicity, we consider a nanoparticle rotating around

an axis of symmetry with constant angular velocity Ω. In
this case, the modification of the surrounding quantum field
arises from the frequency dependence of the particle
dielectric constant. We consider a two-level atom in the
ground state interactingwith the quantum vacuum field. The
atomCM is in a quantum superposition of twowave packets
that propagate in the vicinity of the spinning nanoparticle as
indicated in Fig. 1. We show that the resulting QVSP is
geometric, i.e., independent of the atomic velocity [48,49]
in the limiting case of very narrow wave packets.
Furthermore, we express the QVSP as the circulation of
a geometric vector field, analog to the vector potential in the
Aharonov-Bohm effect, along the interferometer paths. The
effect can be enhanced by considering nanoparticles with a
plasmon resonance [50] in order to optimize the material
dispersion at the atomic transition frequency.
Motional van der Waals (vdW) atomic phase.—We

consider a moving atom interacting with the rotating nano-
particle between the initial and final times t ¼∓ T=2. The
atomic waves acquire a phase associated with the dipolar
interaction Ĥdip ¼ −d̂ · Ê, with d̂ representing the atomic
dipole moment operator. The electric field operator Ê is
taken at the instantaneous average atomic position rkðtÞ ¼
hr̂ðtÞik for each wave packet k. We evaluate the phase
difference Δϕ12 accumulated by the coherent superposition
state of two narrow atomic wave packets following the two
distinct paths P1 ¼ ½r1ðtÞ%, P2 ¼ ½r2ðtÞ%. Up to second
order in perturbation theory, this phase difference reads [29]

Δϕ12 ¼ φ11 − φ22 þ φ12 − φ21; ð1Þ

φkl ¼
1

4

ZZ
T=2

−T=2
dtdt0fgH

d̂
ðt; t0ÞGR;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%

þ gR
d̂
ðt; t0ÞGH;S

Ê
½rkðtÞ; t; rlðt0Þ; t0%g: ð2Þ

The contributions φkl for k ¼ l and k ≠ l correspond to
local and nonlocal phases, respectively. In the concrete
applications discussed later on, the local phases ϕk ≡ φkk
will play a more important role. We have used the trace of
the retarded Green’s function for the scattered electric field
GR;S
Ê

ðr; t; r0; t0Þ ¼ Tr½GR;S
Ê

ðr; t; r0; t0Þ%, which captures how
electrodynamical propagation is modified by the presence
of the nanoparticle (scatterer) placed at the origin. Likewise,
the trace GH;S

Ê
of the Hadamard Green’s function represents

the change in the field fluctuations induced by the presence
of the nanoparticle. The retarded Green’s function of a
vectorial operator ÔðtÞ is defined as the averaged commu-
tatorGR

Ô ij
ðt; t0Þ ¼ ði=ℏÞΘðt − t0Þh½ÔiðtÞ; Ôjðt0Þ%iwithΘðτÞ

denoting the Heaviside function. The Hadamard Green’s
function corresponds to the average value of the anticom-
mutator GH

Ô ij
ðt; t0Þ ¼ ð1=ℏÞhfÔiðtÞ; Ôjðt0Þgi.

The first term on the rhs of (2) accounts for the electric
field response to dipole fluctuations, while the second one
corresponds to the dipole response to vacuum fluctuations
modified by the presence of the nanoparticle. The dipole
Hadamard Green’s function is isotropic and has the
analytical form gH

d̂ ij
ðt; t0Þ ¼ αA0ω0 cosω0ðt − t0Þδij for a

two-level model. Here, αA0 represents the static polariz-
ability and ω0 is the transition frequency. We focus on the
nonretarded vdW regime, for which the atom-particle
distance rðtÞ is much smaller than the transition wavelength
λ0 ¼ 2πc=ω0. As shown below, the QVSP is maximized in
the immediate vicinity of the rotating nanoparticle, which
turns the vdW regime more interesting for experimental
implementations.
We now consider the retarded Green’s function for the

scattered electric field GR;ðSÞ
Ê ij

ðr; t; r0; t0Þ. This function

corresponds to the ith component of the electric field at
position r and time t induced by an instantaneous point
dipole oriented along the jth direction at position r0 and
time t0 after scattering at the nanoparticle at some inter-
mediate time t00 such that t0 < t00 < t. From now on, we
assume that the nanoparticle is very small and neglect
multipolar contributions beyond the electric dipolar one.
The retarded Green’s function in the frequency domain can
then be expressed in terms of the electric polarizability
tensor αΩðωÞ of the rotating nanoparticle as

GR;S
Ê

ðr; r0;ωÞ ¼ G0ðr; 0;ωÞ · αΩðωÞ · G0ð0; r0;ωÞ: ð3Þ

The free-space retarded Green’s function for the electric
field becomes frequency independent [51] G0

ijðr;r0;ωÞ≈
ð3RiRj=R2−δijÞ=ð4πϵ0R3Þ in the nonretarded vdW regime
(R¼r−r0). In the absence of rotation, any direction
orthogonal to the symmetry axis of the nanoparticle is a
principle axis of the polarizability tensor α0ðωÞ with an
eigenvalue denoted by α̃ðωÞ. Rotation around the symmetry

path 1

path 2

FIG. 1. Scheme of the quantum vacuum Sagnac interferometer.
The center of mass of a ground-state atom propagates as a
quantum superposition of two wave packets around a spinning
neutral nanoparticle (angular frequency Ω).

PHYSICAL REVIEW LETTERS 127, 270401 (2021)
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Enhancement of the Quantum Sagnac phase with plasmon resonance 
Goal: Choose atom/nano-particle to maximize second polarizability derivative                 
	 at the 2-level atom frequency 

Enhancement with plasmon resonance!

Plasmon resonance at the frequency

Considered example for numerical applications:  
Na atom                       / K nano-sphere 

with bulk  
plasma freq 
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Estimation of the Quantum Sagnac phase in an atom-Interferometer
Atomic wave-packets of finite width
Total phase = quasi-static van der Waals 
 + quantum Sagnac phase

Accessible quantum Sagnac phase

averaging over wave-packet width 
(as in Alexander D. Cronin and John D. Perreault,  
Phys. Rev. A 70, 043607 (2004))

Considered parameters:
(obtained in J. Ahn et al., Nat. Nanotechnol. 15, 89 (2020).) 

Nanosphere radius
Atomic beam of width 
Atomic velocities 

Na atoms
K nanoparticle
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