

Bilbao & EFO-Lab

Bilbao & EFO-Lab

Exotic light sources

Extreme Fibre Optics Lab

Smart photonics

Quantum technologies

Boosting hybrid quantum networks

XTRE

Approaches to quantum frequency conversion

A good quantum convertor must (ideally) be

Nonlinear crystals Allgaier et al., Nat. Comms. 8, 14288 (2017)

Microresonators on chip Singh et al., Optica **6**, 563 (2019)

- Efficient
- Broadband
- Tunable
- Low noise & decoherence

Opto-mechanical systems Fan et al., Nat. Photonics 10, 766 (2016)

Optical fibers McGuinness *et al.*, Phys. Rev. Lett. **105**, 093604 (2010)

Optical modulation of quantum light

"Acousto-optic" modulation at optical frequencies?

Wish list

- Near-unity efficiency
- Tunable & Broadband
- Low (noise & loss)
- High spatial quality
- Thresholdless

Hydrogen as a molecular modulator

- Large shift ~ 125 THz
- Near-unity efficiency
- Tunable & Broadband
- Low (noise & loss)
- High spatial quality
- Thresholdless
- Highly dispersive
- Weak nonlinear response

Hydrogen as a molecular modulator

- Large shift ~ I 25 THz
 - Near-unity efficiency
 - Tunable & Broadband
 - Low (noise & loss)
- High spatial quality
- Thresholdless
- Highly dispersive
- Weak nonlinear response

Photonic crystal fibers

- Philip Russell introduced the concept of PCF in the 90's
- Micro-structured optical fibers with a periodic cladding
- Capable of guiding light in either solid or hollow channels

Knight et al., Opt. Lett. **21**, 1547 (1996) Russell, Science **299**, 358 (2003)

PCF Fabrication: Stack and Draw

PCF Fabrication: Stack and Draw

Hollow-core anti-resonant fibers

Scanning electron micrograph

- o "Faster" speed of light
- Ultralow attenuation
- Broad transmission windows
- High damage threshold
- Adjustable dispersion & nonlinearity

Finite-element modelling

Benabid et al., Science **298**, 399 (2002) Pryamikov et al., Opt. Express **19**, 1441 (2011) Numkam-Fokoua et al., Adv. Opt. Phot. **15**, 1 (2023)

Pressure-tunable dispersion

Russell et al., Nat. Photonics 8, 278 (2014)

EFO·LAB

Raman scattering & molecular modulation

Hosseini et al., Phys. Rev. Lett. **119**, 253903 (2017) Mridha et al., Optica **6**, 731 (2019) Tyumenev et al., ACS Photonics **7**, 1989 (2020) Arcos et al., EPL, in press (2024)

Quantum frequency conversion of single photons

Tyumenev, Hammer, Joly, Russell, DN, Science **376**, 621 (2022)

Source of entangled biphotons

Stimulated emission tomography

eman ta zabal zaz

Hammer et al., Phys. Rev. Res. 2, 012079 (2020)

Phase-matched molecular modulation

Energy & momentum must be conserved in the interaction

Tyumenev et al., Science **376**, 621 (2022)

Quantum frequency conversion of single photons

Highly efficient conversion at the quantum level

Preservation of nonclassical correlations

Wang et al., Phys. Rev.A 108, 063706 (2023)

Tyumenev et al., Science 376, 621 (2022)

Modelling of the quantum conversion process

20

Selectivity: Down-conversion is 5 orders of magnitude weaker

eman ta zabal zazu

Quantum model of fibre-based molecular modulation

Does this approach preserve other quantum properties such as entanglement?

21

Formalism	Light	Matter
Maxwell-Bloch		
G.Tavis-Cummings		

Two-stage model:

(I) Preparation of the molecular quantum coherence

$$\hat{H}^{I}_{\alpha} = \hbar G_{S} \left(e^{i\Delta\beta z} \alpha_{P} \alpha_{S}^{*} \hat{J}^{+} + e^{-i\Delta\beta z} \alpha_{P}^{*} \alpha_{S} \hat{J}^{-} \right)$$

(II) Molecular modulation of arbitrary quantum states $\hat{H}^{I}_{\xi} = \hbar G_{U} \left(\xi^{*} e^{i\Delta\beta z} \hat{a}^{\dagger}_{M} \hat{a}_{U} + \xi e^{-i\Delta\beta z} \hat{a}_{M} \hat{a}^{\dagger}_{U} \right)$

Tavis and Cummings, Phys. Rev. **170**, 379 (1968) González-Raya *et al.*, submitted (2024)

Conclusions

- ✓ Anti-resonant fibers are excellent platforms for quantum nonlinear photonics
- ✓ Efficient quantum frequency conversion achieved in H_2 -filled anti-resonant fibers
- A full quantum framework predicts the transfer of entanglement during molecular modulation

Coloring light quanta with synchronous molecular motion

-Mm-Mm-O

Thank you for your attention!

RIO CIA, INNOVACIÓN RSIDADES

