

System-environment quantum information flow

Taysa M. Mendonça Mauro Paternostro Lucas Céleri Diogo O. Soares-Pinto

arXiv:2402.15483

Motivation

PHYSICAL REVIEW RESEARCH 2, 043419 (2020)

Reservoir engineering for maximally efficient quantum engines

Taysa M. Mendonça[®],¹ Alexandre M. Souza,² Rogério J. de Assis,³ Norton G. de Almeida,³ Roberto S. Sarthour,² Ivan S. Oliveira,² and Celso J. Villas-Boas¹

¹Departamento de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil ²Centro Brasileiro de Pesquisas Físicas, 22290-180, Rio de Janeiro, Rio de Janeiro, Brazil ³Instituto de Física, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil

(Received 18 February 2020; accepted 18 November 2020; published 24 December 2020)

Adamantane

Motivation

PHYSICAL REVIEW RESEARCH 2, 043419 (2020)

Reservoir engineering for maximally efficient quantum engines

Taysa M. Mendonça[®],¹ Alexandre M. Souza,² Rogério J. de Assis,³ Norton G. de Almeida,³ Roberto S. Sarthour,² Ivan S. Oliveira,² and Celso J. Villas-Boas¹

¹Departamento de Física, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil ²Centro Brasileiro de Pesquisas Físicas, 22290-180, Rio de Janeiro, Rio de Janeiro, Brazil ³Instituto de Física, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil

(Received 18 February 2020; accepted 18 November 2020; published 24 December 2020)

Motivation

What is the relationship between <u>coupling constants</u>, <u>number of qubits</u> and non-<u>Markovianity</u>?

$$\mathbf{H}_{SE} = \underbrace{J_{SE}}_{\alpha=a,b} \sum_{\alpha=a,b} \left(2S_z I_z^{\alpha,1} + S_x I_x^{\alpha,1} + S_y I_y^{\alpha,1} \right)$$

Non-Markovianity Measure - Breuer, Laine and Piilo representation (BLP)

We calculate the dynamics of the system from the initial states below

H.-P. Breuer et al. PRL, 103, 210401 (2009); Laine et al., PRA, 81, 062115 (2010)

Non-Markovianity Measure - Breuer, Laine and Piilo representation (BLP)

We calculate the dynamics of the system from the initial states below

Dynamics: $\dot{\rho}_{SE}(t) = -\frac{i}{\hbar} [H, \rho_{SE}(t)]$ where $\rho_{SE}(0) = \rho_{S}(0) \otimes \rho_{E}(0)$	with:	$\rho_{S}^{(\pm)}(t) = \operatorname{Tr}_{E}\left(\rho_{SE}^{(\pm)}(t)\right)$ $\rho_{E}^{(\pm)}(t) = \operatorname{Tr}_{S}\left(\rho_{SE}^{(\pm)}(t)\right)$
---	-------	---

H.-P. Breuer *et al*. PRL, 103, 210401 (2009); Laine *et al*., PRA, 81, 062115 (2010)

Non-Markovianity Measure - Breuer, Laine and Piilo representation (BLP)

We calculate the dynamics of the system from the initial states below

H.-P. Breuer *et al*. PRL, 103, 210401 (2009); Laine *et al*., PRA, 81, 062115 (2010)

Trace distance

Trace distance

Information Flow

Information Flow

Relationship between coupling constants and number of qubits

Quantum Darwinism

Same amount of information about the system in each environment fragment.

Mutual information:

$$I(S: \mathbf{F}_k) = S(\rho_S) + S(\rho_{F_k}) - S(\rho_{SF_k})$$

Quantum Darwinism - Mutual Information

Quantum Darwinism - Mutual Information X Fragment

Quantum Darwinism - Discord

$$D(E/S) = \min_{\{P_k\}} \sum_{k} p_k S(\rho_{E/k}) + S(\rho_S) - S(\rho_{SE})$$

Conclusion

- We checked how information is transferred from the system qubit to the environment and back again. We also show how such dynamics occur within the environment, qubit by qubit.
- We show how couplings affect the time to send and return information in an environment described through two chains of qubits.
- Our system has characteristics of Quantum Darwinism in some points of sending and returning information from the system to the environment.
- However, these points do not configure strong Darwinism.

Thanks!

