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Why Circuit Quantum 
Electrodynamics?



Circuit Quantum Electrodynamics
Promising Platform for successful Quantum Computation

Photograph of the Sycamore chip. 

Sycamore Google Quantum Computer

QUANTUM SUPREMACY

2019:  53  qubits
2024:  80 qubits
2025: 1000 qubit

QUANTUM UTILITY



Circuit Quantum Electrodynamics has also provided the
Observation of the Dynamical Casimir EffectSimulation



Very difficult to 
observe…

Rate of photon production
by a single oscillating mirror
in vacuum

1 photon/day!!

El efecto Casimir dinámico

Un espejo que oscila emite fotones!

�! Efecto Casimir dinámico 1
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For cavities the situation is
better due to parametric 
resonance… but still 
difficult

• In order to produce 5 GHz 
photons, we need mechanical 
oscillations with 10GHz

• Actual limit: 6GHz

El efecto Casimir dinámico

El efecto se amplifica en una cavidad

Vamos a considerar

Campo escalar cuántico

Sin masa

1 + 1 dimensiones

Un espejo móvil
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Modulated inductance of  
SQUID at high 
frequencies (> 10 GHz) 

EXPERIMENTAL VERIFICATION OF DCE (2011) 

By applying a time-
dependent 
magnetic flux 
through the SQUID 
we get a time-
dependent 
inductance, which 
in turn produces a 
time-dependent 
boundary condition 
for the field in the 
waveguide

Verificación experimental

Propuesta4

Medición 5

4J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. Lett. 103, 147003 (2009)
5G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature 479,

376 (2011)

9/22



Time dependent boundary condition

Verificación experimental

Propuesta4 Medición 5

4J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. Lett. 103, 147003 (2009)
5G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature 479,

376 (2011)

9/22



DIFFERENT EXPERIMENTAL REALIZATIONS OF DCE 

holacaracola

Fluctuaciones cuánticas e interacciones de Casimir entre
objetos micro y macroscópicos:

fuerzas, creación de fotones, coherencia y entrelazamiento
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1. Introduction to Circuit Quantum Electrodynamics 

2.  New Universal Gate : Controlled-squeeze gate

3.  What can we do with it?   Encoding quantum states 
in the resonator in an error-detectable way   

4.  Summary

Outline



1. Introduction to Circuit 
Quantum Electrodynamics 



1. Introduction to Circuit Quantum Electrodynamics

Capacitive 
couplings 

Circuit  QED: quantum circuits with quantum atoms and resonators interconnecting them

Artificial atoms

Two level atoms (Qubits) made 
with superconducting elements

(rf) Resonators

Waveguide storing single mode of the 
EM field: Quantum oscillator

Scheme of a typical circuit QED setup 



LC circuit: the simplest
electronic resonator

Quantum harmonic oscillators come in many shapes and sizes and constitute different elements of a circuit

1. Introduction to Circuit Quantum Electrodynamics



Storages excitations of the electromagnetic field

1. Introduction to Circuit Quantum Electrodynamics

One mode approximation:

Series of  LC-
Resonators 

Resonator or 
Transmission line



Artificial 
atom 

Non linear potential well of the transmon qubit 
(full line) compared to the quadratic potential of 

the LC oscillator (dashed lines). 

1. Introduction to Circuit Quantum Electrodynamics

Based on a 
Josephson Junction

We shall use a transmon (most stable artificial atom)
Non linear Inductance



In reality, things do not look like in paper

This is a transmon



1. Introduction to Circuit Quantum Electrodynamics

Resonant Case 
We shall work in the non resonant case .

Interaction qubit-
resonator

In the one-mode approximation for 
the resonator and the 2-Level 

system for the transmon, using 
RWA This is a Jaynes Cummings 

interaction Hamiltonian



➢ Qubits can be tunable (Google) and non tunable (IBM)

➢ Single qubit operation: rf pulses

➢ Gaussian operations on the resonator. Qubit-qubit interaction mediated by 
resonator. JC resonant, non resonant, strong coupling regime

➢ Universal set of gates: Controlled displacement (together with single qubit 
and gaussian operations)

1. Introduction to Circuit Quantum Electrodynamics

Summary cQED Toolbox



2. New Universal Gate:  
Controlled-Squeeze Gate



The superconducting circuit at the 
right (SQUID) acts as a classical 
pump

SQUID

The superconducting circuit at 
the left acts as a qubit with 
quantum states |0⟩ and |1⟩

The resonator is terminated by a SQUID where
we apply a time dependent flux

RESONATOR

To implement the proposed controlled-squeeze gate we need to use three basic elements: one resonator and
two circuits containing Josephson components located at each side

2. New Universal Gate:  Controlled-Squeeze 

SETUP



2. New Universal Gate:  Controlled-Squeeze 

The lagrangian for a field inside a superconducting resonator of length d with inductance L0 and capacitance C0 per unit length, 
terminated in a SQUID at x = d

SQUID

External magnetic 
field flux

LOMBARDO, MAZZITELLI, SOBA, AND VILLAR PHYSICAL REVIEW A 93, 032501 (2016)

satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑

n

[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],

(8)
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑

n

[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],

(8)
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and

!2

EC

φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as

φ(x,t) = 2e

!

√
2

C0d

∑

n

qn(t) cos knx, (6)

where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:

(knd) tan knd = 2EJ cos f0

EL,cav
− 2CJ

C0d
(knd)2. (7)

In terms of the new variables qn(t) the Lagrangian reads

Lcav = 1
2

∑

n

[
Mnq̇

2
n − Mnω

2
nq

2
n

]
+ EJ φ2

d [cos f0 − cos f (t)],

(8)
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satisfying generalized Robin boundary conditions. The gen-
eralization involves not only time-dependent parameters, but
also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
of the mass; see, for instance, [14].) If the time dependence of
the boundary conditions starts at t = 0, the constant values of
Ai and Bi for t < 0 determine the spectrum of the static cavity
that can be tuned setting different values for the properties of
the SQUIDs.

We are thus led to the problem of analyzing particle
creation for a scalar field in 1 + 1 dimensions subjected to the
boundary conditions Eq. (1). This problem has been partially
addressed in previous works. Reference [15] considered the
case of a single mirror with time-dependent Robin boundary
conditions, and computed perturbatively the spectrum of
created particles. In Ref. [16] a similar problem was studied
analytically, considering nontrivial boundary conditions at one
or two points, and paying particular attention on whether
the time-dependent Robin parameter reproduces the boundary
condition for a moving mirror or not. The effects produced by
the inclusion of the term proportional to φ̈, not considered in
[16], have been analyzed for waveguides ended by a SQUID
in [17]. Some of us [14] considered the case of a closed cavity
with general boundary conditions, showing that parametric
resonance may induce an exponential growth in the number of
particles inside the cavity.

In the present paper we will present a detailed numerical
analysis of the particle creation rate, along with analytical
calculations that describe the main features of the numerical
results. (For previous numerical approaches in the case of
Dirichlet or Neumann boundary conditions, see [18].) As we
will see, particle creation depends crucially on the properties
of the static spectrum of the cavity, and also on the amplitude
of the time-dependent part of the functions A2(t) and B2(t).
This is to be expected from previous results for the case of
moving mirrors that impose Dirichlet or Neumann boundary
conditions. Indeed, when the spectrum is not equidistant,
parametric resonance involves a finite number of modes, and
the number of particles in these modes grow exponentially
when the external frequency is properly chosen [19]. On
the other hand, for equidistant spectra, the coupling between
an infinite number of modes makes the number of particles
to grow quadratically or linearly in time, for short or long
time scales, respectively [5], while the total energy grows
exponentially. We will show that similar situations hold for the
superconducting cavities. Moreover, the numerical approach
will allow us to address cases where the boundary conditions
oscillate with a large amplitude (that are in principle accessible
for experiments) but do not admit an analytical description.

The paper is organized as follows. In Sec. II we describe
the model for a (linearized) superconducting cavity with
time-dependent boundary conditions and show that the system
can be described as a set of coupled harmonic oscillators. In
Sec. III we study analytically the particle creation rate using
multiple scale analysis (MSA), emphasizing the dependence
of the results with the main characteristics of the spectrum.
Section IV contains the numerical results, along with a
brief discussion of the numerical method. We compute the

particle creation rate for spectra of different characteristics and
compare numerical and analytical results. Section V contains a
discussion of the results and the main conclusions of our work.

II. TUNABLE SUPERCONDUCTING CAVITY

We shall consider a superconducting cavity of length d
which is decoupled from the input line at x = 0 and has a
SQUID at x = d. For the theoretical description we follow
closely Ref. [20]. The cavity, which is assumed to have
capacitance C0 and inductance L0 per unit length, is described
by the superconducting phase field φ(x,t) with the Lagrangian

Lcav =
(

!
2e

)2
C0

2

∫ d

0
dx(φ̇2 − v2φ′2)

+
[(

!
2e

)2 2CJ

2
φ̇2

d − EJ cos f (t)φ2
d

]
, (2)

where v = 1/
√

L0C0 is the field propagation velocity, φd the
value of the field at the boundary by φ(d,t), and f (t) is the
phase across the SQUID controlled by external magnetic flux.
EJ and CJ denote the Josephson energy and capacitance,
respectively. The Lagrangian in Eq. (2) contains additional
contributions proportional to higher powers of φd that will not
be considered in the rest of this paper.

As anticipated, the description of the cavity involves the
field φ(x,t) for 0 < x < d and the additional degree of
freedom φd . The dynamical equations read

φ̈ − v2φ′′ = 0 (3)

and
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φ̈d + 2EJ cos f (t)φd + EL,cavdφ′
d = 0, (4)

where EC = (2e)2/(2CJ ) and EL,cav = (!/2e)2(1/L0d). The
equation above comes from the variation of the action with
respect to φd and can be considered as a generalized boundary
condition for the field. We could consider general boundary
conditions also at x = 0, but for the sake of simplicity we will
assume that φ′(0,t) = 0. (Physically this corresponds to the
situation where the cavity is decoupled.)

It will be useful to write the Lagrangian in terms of
eigenfunctions of the static cavity. Assuming that

f (t) = f0 + θ (t)θ (tF − t)ε sin $t, (5)

we can expand the field as
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where the eigenfrequencies kn satisfy Eq. (4) in the static case
f = f0:
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In terms of the new variables qn(t) the Lagrangian reads
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also the presence of the second time derivative φ̈. This term
indicates that, in fact, there is a degree of freedom localized at
x = d. (The mechanical analog would be a string ended with
a mass, the boundary condition being the equation of motion
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Coupling to external time-dependent flux 
Dispersive coupling 

between the resonator 
and qubit

Qubit

A state dependent resonator

SQUID

2. New Universal Gate:  Controlled-Squeeze

Controlled Squeeze GateTime dependent frequency squeezes the state of the resonator 
State dependences can be used to turn on and off the parametric resonance

Hamiltonian 
of the model
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What is squeezing?
A coherent state has minimum uncertainty

Coherent state of the 
harmonic oscillator

Squeezed state



What is Squeezing?

Squeezed state               eigenstate of

We define the squeezing operator

Time dependence on the 
frequency induces squeezing 

How to prepare a squeezed state?



Controlled Squeeze Gate

We generate the squeezing by the 
external pumping of the SQUID, 
through parametric resonance

If the control qubit is in state       , an harmonic 
evolution takes place (can be compensated)

2. New Universal Gate:  Controlled-Squeeze 

A universal gate 

From the Hamiltonian:

In the Interaction 
representation and 
after the RWA 

SQUID

If the control qubit is in state     ,  
the cavity field is squeezed

Controlled 
Squeeze Gate
Setup



It applies a squeezing operation             conditioned on the state of the qubit

Universal Gate It satisfied the following condition when combined with the Displacement operator

Which means that applying a displacement operator             in between two squeezing operators                   y         )
is equivalent to the application of a different displacement operator

The above relation among operators can be extended to control gates

The universality of                              implies the universality of 

2. New Universal Gate:  Controlled-Squeeze 



Single qubit operations

Gaussian operations in the resonators

Qubit measurements

What does 
Universality mean?

Can be used to create any 
quantum state of the 

qubit-resonator system

2. New Universal Gate:  Controlled-Squeeze

Controlled Squeezed Gate is universal if and only if Controlled Displacement Gate in universal

Combined with:



2. New Universal Gate:  Controlled-Squeeze 

A Controlled Squeeze 
Gate can be implemented 

with trapped ions



3. What can we do with a 
Controlled Squeeze Gate?



3. What can we do with a Controlled Squeeze Gate?

INPUT OUTPUT

This means that when losing a photon,
the error can be detected by a
subsequent parity measurement of the
photon number inside the resonator

Odd and even superpositions of
squeezed states along two orthogonal
directions in quadrature space

Encoding states of 
the resonator

Encoding quantum 
states in the resonator

Have similar properties to the four-legged
cat states as they are respectively
superposition of 4n and 4n + 2 photon
states



INPUT OUTPUT

(i) Apply a Hadamard gate to the qubit
(ii) Apply a non-compensated 
(iii) Apply a π-rotation to the qubit
(iv) Apply the operator 
(v) Apply a π-rotation to the qubit
(vi) Apply another Hadamard gate to the qubit

Protocol

State of 
the qubit

3. What can we do with a Controlled Squeeze Gate?



➢ We have simulated:

The fidelity is defined as

Mean Fidelity (maximum)

r=1.5

Purity values obtained are 97.3% (equator) and 99.3% poles

0.962
Thermal Coupling 60 mk
Relaxation time 200 micro s
Gate time 200 ns

Fidelity

Losses

1

0.975

0.989

3. What can we do with a Controlled Squeeze Gate?



4. Summary



4. Summary

➢ We presented a method for a universal quantum gate for Control Squeeze

➢ Parametric resonance is turned on and off by the state of the qubit

➢ Can be used for encoding quantum states in an error detectable way 


