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A controlled-squeeze gate in superconducting quantum circuits
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We present a method to prepare non-classical states of the electromagnetic field in a microwave
resonator. It is based on a controlled gate that applies a squeezing operation on a SQUID-terminated
resonator conditioned on the state of a dispersively coupled qubit. This controlled-squeeze gate,
when combined with Gaussian operations on the resonator, is universal. We explore the use of
this tool to map an arbitrary qubit state into a supersposition of squeezed states. In particular,
we target a bosonic code with well-defined superparity and photon loss is thus error detectable by
nondemolition parity measurements. We analyze the possibility of implementing this using state-
of-the-art circuit QED tools and conclude that it is within reach of current technologies.
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Why Circuit Quantum
Electrodynamics?
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Promising Platform for successful Quantum Computation
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Photograph of the Sycamore chip.

-’

—QUANTUM-SHPREMACY—

. 2019: 53 qubits
mt 2024: 80 qubits QUANTUM UTILITY

Sycamore Google Quantum Computer 2025: 1000 qubit




Circuit Quantum Electrodynamics has also provided the
Simulation ©f the Dynamical Casimir Effect
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Very difficult to
observe...
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For cavities the situation is
better due to parametric
resonance... but still
difficult

* In order to produce 5 GHz
photons, we need mechanical
oscillations with 10GHz

o Actual limit; 6GHz
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EXPERIMENTAL VERIFICATION OF DCE (2011)
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DIFFERENT EXPERIMENTAL REALIZATIONS OF DCE
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1. Introduction to Circuit Quantum Electrodynamics
2. New Universal Gate : Controlled-squeeze gate

3. What can we do with it? Encoding quantum states
in the resonator in an error-detectable way

4. Summary
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1. Introduction to Circuit
Quantum Electrodynamics



1. Introduction to Circuit Quantum Electrodynamics

Circuit QED: quantum circuits with quantum atoms and resonators interconnecting them
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Scheme of a typical circuit QED setup



1. Introduction to Circuit Quantum Electrodynamics

LC circuit: the simplest
electronic resonator
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Quantum harmonic oscillators come in many shapes and sizes and constitute different elements of a circuit



1. Introduction to Circuit Quantum Electrodynamics

Resonator or

.. i Storages excitations of the electromagnetic field
Transmission line

Series of LC-
Resonators

One mode approximation: g = figp 4ta



1. Introduction to Circuit Quantum Electrodynamics

u L] - m
Artificial Basedona N~ . [2n®
atom Josephson Junction _m_ I'=1Igsin ((IT,)
We shall use a transmon (most stable artificial atom) .
Non linear Inductance
E Q2 ®0 27[ A
£ — 5 q_f—z—ICCOS QTCD
) £ p) 7 0
S
g flq =4E,. n” — E;cos(p)
N Ej/Ec >> 1
Non linear potential well of the transmon qubit .
(full line) compared to the quadratic potential of . hw, ho,
the LC oscillator (dashed lines). H,= 5 6, = 5 <|0)(0| — [ 1)1 |>

ho, = hoEc, E))



In reality, things do not look like in paper

This is a transmon




1. Introduction to Circuit Quantum Electrodynamics

Interaction qubit-

resonator
Cx
C ]
1 2
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In the one-mode approximation for ine = .2 c¢q - : A o
the resonator and the 2-Level - b —é6_
system for the transmon, using . -
RWA H,, = y@'s_+as,) This is a Jaynes Cummings
. interaction Hamiltonian
H, = ya'ac
hw

Resonant Case @, = @,
We shall work in the non resonant case @, # ®,

H, = T"az + ho,d'a + ya'tas,




1. Introduction to Circuit Quantum Electrodynamics

Summary cQED Toolbox

> Qubits can be tunable (Google) and non tunable (IBM)

> Single qubit operation: rf pulses
resonator. JC resonant, non resonant, strong coupling regime

and gaussian operations)

\_

> Gaussian operations on the resonator. Qubit-qubit interaction mediated by

> Universal set of gates: Controlled displacement (together with single qubit

~

/




2. New Universal Gate:
Controlled-Squeeze Gate



2. New Universal Gate: Controlled-Squeeze

To implement the proposed controlled-squeeze gate we need to use three basic elements: one resonator and

SETUP two circuits containing Josephson components located at each side
RESONATOR
Qubit
T Im) }_’ @.(t) [L The superconducting circuit at the
- w ~ right (SQUID) acts as a classical
Bog. g Ecr,Esr  pump
squip 1(?)

The superconducting circuit at The resonator is terminated by a SQUID where
the left acts as a qubit with we apply a time dependent flux

quantum states |0) and |1)

’IEI‘ ®,.(t) = esin(wgt)



2. New Universal Gate: Controlled-Squeeze

The lagrangian for a field inside a superconducting resonator of length d with inductance L0 and capacitance CO per unit length,
terminated in a SQUID at x = d

ey
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-

E_Cd)d + 2E; cos f(t)pq + EL,can(p;J =0,



2. New Universal Gate: Controlled-Squeeze

Qubit
Hamiltonian
of the model
w
sSQUID 1(¥)
A Wq AP s At A A . ~ ~
H(t) = Eqaz +wa'a+xalas, +ggesin(wqt — 0)(a'" +a)?,
\a Dispersive’ coupling % -
Qubit between the resonator  coypling to external time-dependent flux
I\ and qubit J wo,1(t) = wWo,1 + gae sin(wqt — 0)

Y
A state dependent resonator

|0> —» W =w-+YX

1) — w1 =w—x

Time dependent frequency squeezes the state of the resonator |

|
|
===y State dependences can be used to turn on and off the parametric resonance } Controlled Squeeze Gate l
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What is squeezing?

A coherent state has minimum uncertainty Axap =

Coherent state of the p
harmonic oscillator
da 020 e
Ap | dl . .
- X -
Ax=Ap 7
p
Squeezed state
Ax
N 7
g" Ax= 2mw
Ap| 1“9 X mhw
Ap =
2
Ax # Ap




What is Squeezing?

Squeezed state —> eigenstate of de™ cosh(r) + a'e " sinh(r)

: Vo

. !
‘ Ir,6) = (tanh(Pe?®)" Y2 | 2m)
y/coshr =, n!
—i042 _ ,if 512))

We define the squeezing operator  S(7, 8) = (172

How to prepare a squeezed state?

Time dependence on the 1 m
T(F) — 52 1 o122
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2. New Universal Gate: Controlled-Squeeze

Qubit
Controlled - 1
Sq ueeze Gate o We generate the squeezing by the

Foo B, w external pumping of the SQUID,
Setup @ e through parametric resonance

I
SQUID 1(®) Wy = 2

From the Hamiltonian: H() = 70‘ + aTa +)(aTaO' + 84€ sm(a)dt — 9)(61T + d)

e~ = §(g €1,0) @ | 11| + Upy(AD) @ |0)(0]

In the Interaction

representation and 2 0 A2 0 A2 X
after the RWA Hy = Egde(e Da*—e?a?) @|1)1|+Ad"'a® |0>(0| A =@, - @
\’ )] \ A> g
Y Y
If the control qubit is in state | 1), If the control qubit is in state |0), an harmonic
the cavity field is squeezed evolution takes place (can be compensated)

l l

Controlled Squeeze Gate A universal gate




2. New Universal Gate: Controlled-Squeeze
U (t) := C-Sqz(r,0). = |tapplies a squeezing operation S(r, 6) conditioned on the state of the qubit
Universal Gate It satisfied the following condition when combined with the Displacement operator

D(v): 5(r,0)D(7)571(r,6) = D(v')

Which means that applying a displacement operator D(v) in between two squeezing operators S’_l(r,é) y S(r,0)
is equivalent to the application of a different displacement operator

The above relation among operators can be extended to control gates

D='()C-Sqz(r, 0) D(v)(C-Saz)~*(r,0) = C-Dsp(y’ —7)

The universality of C-Dsp(r,0) implies the universality of C-Sqz(r, 0)



2. New Universal Gate: Controlled-Squeeze

What does
Universality mean?

Singl it '
ingle qubit operations Can be used to create any

Combined with: < Gaussian operations in the resonators quantum state of the

C —Sqz(r, 0) Qubit measurements qubit-resonator system

-

Controlled Squeezed Gate is universal if and only if Controlled Displacement Gate in universal



2. New Universal Gate: Controlled-Squeeze

A Controlled Squeeze
Gate can be implemented

with trapped ions & ) = 5 j:(IT ,0) £ |r,0+ 7)),

IX+) X-)

PHYSICAL REVIEW A 101, 052331 (2020) T

State-dependent motional squeezing of a trapped ion: Proposed method and applications
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We show that the motion of a cold trapped ion can be squeezed by modulating the intensity of a phase-stable
optical lattice placed inside the trap. The method we propose is reversible (unitary) and state selective: it effec-
tively implements a controlled-squeeze gate. This resource could be useful for quantum information processing
with continuous variables. We show that the controlled-squeeze gate can prepare coherent superpositions of
states which are squeezed along complementary quadratures. Furthermore, we show that these states, which we
denote “X’ states,” exhibit a high sensitivity to small displacements along two complementary quadratures, which
makes them useful for quantum metrology.




3. What can we do with a
Controlled Squeeze Gate?



3. What can we do with a Controlled Squeeze Gate?

Encoding quantum
states in the resonator

10) @ (@l x.) + Blxl))

OUTPUT M

(@|0)+4|1)) ® |0)

—
INPUT

Encoding states of

the resonator — Odd and even superpositions of
squeezed states along two orthogonal
directions in quadrature space

This means that when losing a photon, Have similar properties to the four-legged
the error can be detected by a cat states as they are respectively
subsequent parity measurement of the superposition of 4n and 4n + 2 photon
photon number inside the resonator states




3. What can we do with a Controlled Squeeze Gate?

Protocol

l
1
| lIJQR) =
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OUTPUT

|¥p) = al0) +5]1)

—

INPUT

l
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~

Apply a Hadamard gate to the qubit

(ii) Apply a non-compensated C — sqz(r, 6)
(iii) Apply a Tr-rotation to the qubit

(iv) Apply the operator U (r, 8 + 2¢ + , )

(v) Apply a Tr-rotation to the qubit

Q) Apply another Hadamard gate to the qubit /

7

(@ cily) +Bclx))

State of
the qubit

L
NG

ga c_lx)y+Beilxy)) (1)

cy = \/ 1+ 1/v/cosh(2)



3. What can we do with a Controlled Squeeze Gate?

Fidelity The fidelity is definedas F = | (Wiqon | Prea) |°

Mean Fidelity (maximum) 7 — 1+7 + -7 1 — 1 P,=a*-p*
2 2 cosh(2r)
> We have simulated: 0.989

w,/(2n) = 6 GHz

w,/(2r) =4 GHz

x/(2n) = 8 MHz
0.975 84 =50 MHz

{ Thermal Coupling 60 mk

0.962

Losses Relaxation time 200 micro s

Gate time 200 ns

r=1.5

F20995 —>r22 Purity values obtained are 97.3% (equator) and 99.3% poles






4. Summary

> We presented a method for a universal quantum gate for Control Squeeze
> Parametric resonance is turned on and off by the state of the qubit

> Can be used for encoding quantum states in an error detectable way F~ 1—e (1 — P2)/4
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