Superconducting circuits: from photon generation to universal quantum gates

Fernando C. Lombardo

III International Workshop on QNS Brasilia - August 2024

Collaboration

A controlled-squeeze gate in superconducting quantum circuits

Nicolás F. Del Grosso,¹ Rodrigo G. Cortiñas,² Paula I. Villar,¹ Fernando C. Lombardo,¹ and Juan Pablo Paz¹

¹Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina ²Department of Applied Physics and Physics, Yale University, New Haven, CT 06520, USA

We present a method to prepare non-classical states of the electromagnetic field in a microwave resonator. It is based on a controlled gate that applies a squeezing operation on a SQUID-terminated resonator conditioned on the state of a dispersively coupled qubit. This controlled-squeeze gate, when combined with Gaussian operations on the resonator, is universal. We explore the use of this tool to map an arbitrary qubit state into a supersposition of squeezed states. In particular, we target a bosonic code with well-defined superparity and photon loss is thus error detectable by nondemolition parity measurements. We analyze the possibility of implementing this using state-of-the-art circuit QED tools and conclude that it is within reach of current technologies.

Nicolás del

Grosso

Paula Villar

Fernando Lombardo

Juan Pablo Paz

Rodrigo Cortiñas

Why Circuit Quantum Electrodynamics?

Circuit Quantum Electrodynamics

Promising Platform for successful Quantum Computation

Sycamore Google Quantum Computer

Photograph of the Sycamore chip.

QUANTOW SUPREMACT

QUANTUM UTILITY

2019: 53 qubits 2024: 80 qubits 2025: 1000 qubit

Circuit Quantum Electrodynamics has also provided the Simulation of the Dynamical Casimir Effect

Very difficult to observe...

Rate of photon production by a single oscillating mirror *in vacuum*

$$\frac{N}{T} = \frac{A}{60\pi^2} \frac{\Omega^3}{c^2} \left(\frac{v_{max}}{c}\right)^2 \qquad \mathbf{V} = \mathbf{\Omega} \, . \, \mathbf{a}$$

$$\frac{v_{max}}{c} = 10^{-7} \quad \Omega = 10 GHz \quad A = 10 cm^2$$

1 photon/day!!

Single-mirror setups

¹G.T. Moore, J. Math. Phys. 11, 2679 (1970) ²A. Lambrecht, M.T. Jaekel and S. Reynaud, Phys. Rev. Lett.77, 615 (1996) For *cavities* the situation is better due to parametric resonance... but still difficult

- In order to produce 5 GHz photons, we need mechanical oscillations with 10GHz
- Actual limit: 6GHz

$$N = e^{\eta \epsilon \Omega t}, \eta = O(1)$$

$$N_{max} \simeq e^{\epsilon Q} \le e^{10^{-8}Q}$$

EXPERIMENTAL VERIFICATION OF DCE (2011)

By applying a timedependent magnetic flux through the SQUID we get a timedependent inductance, which in turn produces a time-dependent boundary condition for the field in the waveguide

Modulated inductance of SQUID at high frequencies (> 10 GHz)

⁴J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. Lett. 103, 147003 (2009)

⁵G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, and P. Delsing, Nature 479, 376 (2011)

Time dependent boundary condition

DIFFERENT EXPERIMENTAL REALIZATIONS OF DCE

J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys. Rev. A 82, 052509 (2010).

2. New Universal Gate : Controlled-squeeze gate

3. What can we do with it? Encoding quantum states in the resonator in an error-detectable way

4. Summary

Circuit QED: quantum circuits with quantum atoms and resonators interconnecting them

Scheme of a typical circuit QED setup

LC circuit: the simplest electronic resonator

Quantum harmonic oscillators come in many shapes and sizes and constitute different elements of a circuit

Resonator or Transmission line

Storages excitations of the electromagnetic field

$$\begin{aligned} & C_{\kappa} & L_{0} & \Phi_{n} & \Phi_{n+1} & C_{\kappa} \\ & & & & \\ & & C_{0} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

<u>One mode approximation:</u> $\hat{H}_r = \hbar \omega_r \hat{a}^{\dagger} \hat{a}$

We shall use a transmon (most stable artificial atom)

Non linear potential well of the transmon qubit (full line) compared to the quadratic potential of the LC oscillator (dashed lines). $\hbar\omega_a = \hbar\omega_a(E_C, E_J)$ Non linear Inductance

$$\begin{split} \hat{H}_{q} &= \frac{\hat{Q}^{2}}{2C_{\Sigma}} - \frac{\Phi_{0}}{2\pi} I_{c} \cos\left(\frac{2\pi}{\Phi_{0}}\hat{\Phi}\right) \\ \hat{H}_{q} &= 4E_{C} \ \hat{n}^{2} - E_{J} \cos(\hat{\varphi}) \\ \vdots \\ \hat{H}_{q} &= \frac{\hbar\omega_{q}}{2} \hat{\sigma}_{z} = \frac{\hbar\omega_{q}}{2} \left(|0\rangle\langle 0| - |1\rangle\langle 1|\right) \end{split}$$

In reality, things do not look like in paper

Interaction qubitresonator

In the one-mode approximation for the resonator and the 2-Level system for the transmon, using RWA

 $\hat{Q}_{LC} \rightarrow (\hat{a}^{\dagger} - \hat{a})$ $\hat{Q}_{\text{trans}} \rightarrow (\hat{b}^{\dagger} - \hat{b})$ $\begin{array}{c} \hat{b}^{\dagger} \to \hat{\sigma}_{+} \\ \hat{b} \to \hat{\sigma} \end{array}$

Resonant Case $\omega_r = \omega_q$ We shall work in the non resonant case $\omega_r \neq \omega_q$

SETUP To implement the proposed controlled-squeeze gate we need to use three basic elements: one resonator and two circuits containing Josephson components located at each side

The superconducting circuit at the left acts as a qubit with quantum states $|0\rangle$ and $|1\rangle$

The resonator is terminated by a SQUID where we apply a time dependent flux

$$\Phi_x(t) = \epsilon \sin(w_d t)$$

The lagrangian for a field inside a **superconducting resonator** of length d with inductance L0 and capacitance C0 per unit length, terminated in a SQUID at x = d (a) $\Phi(x,t) \neq \Phi_{\text{ext}}(t)$

$$L = \left(\frac{1}{2e}\right)^2 \frac{C_0}{2} \int_0^d (\dot{\Phi}^2 - v^2 \Phi'^2) dx + \left(\frac{1}{2e}\right)^2 2C_J \int_0^d \frac{\dot{\Phi}^2}{2} \delta(x-d) dx + 2E_J \int_0^d \cos(\Phi) \cos\left(2e\phi(t)\right) \delta(x-d) dx.$$
Wustmann Shumeiko 2013

$$\ddot{\phi} - v^2 \phi'' = 0$$

$$E_C = (2e)^2 / (2C_J)$$

$$E_{L,cav} = (\hbar/2e)^2 (1/L_0 d)$$

$$f(t) = \omega \hat{a}^{\dagger} \hat{a} + g_d \epsilon \sin(\omega t - \theta)(\hat{a}^{\dagger} + \hat{a})^2$$

Ĥ

$$\frac{\hbar^2}{E_C}\ddot{\phi}_d + 2E_J\cos f(t)\phi_d + E_{L,\mathrm{cav}}d\phi'_d = 0,$$

Time dependent frequency squeezes the state of the resonator State dependences can be used to turn on and off the parametric resonance

Controlled Squeeze Gate

What is squeezing?

A coherent state has minimum uncertainty $\Delta x \Delta p = \frac{\hbar}{2} \rightarrow \hat{a} |\Psi\rangle = \mu |\Psi\rangle$

What is Squeezing?

Squeezed state
$$\longrightarrow$$
 eigenstate of $\hat{a}e^{i\theta}\cosh(r) + \hat{a}^{\dagger}e^{-i\theta}\sinh(r)$
 $|r, \theta\rangle = \frac{1}{\sqrt{\cosh r}} \sum_{n=0}^{\infty} (\tanh(r)e^{i\theta})^n \frac{\sqrt{2n!}}{n!} |2n\rangle$
We define the squeezing operator $\hat{S}(r, \theta) = e^{(r/2(e^{-i\theta}\hat{a}^2 - e^{i\theta}\hat{a}^{\dagger^2}))}$

How to prepare a squeezed state?

Time dependence on the frequency induces squeezing

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\frac{\hat{x}}{\sigma} + i \frac{\sigma}{\hbar} \hat{p} \right)$$
$$\dot{a} = -i\omega \hat{a} - \frac{\dot{\omega}}{2\omega} \hat{a}^{\dagger}$$

$$\hat{H}(t) = \frac{1}{2m}\hat{p}^2 + \frac{m}{2}\omega(t)^2\hat{x}^2$$

$$a_t \rightarrow u \ a + v \ a^{\dagger}$$
$$|u_t|^2 - |v_t|^2 = 1$$

60

Controlled Squeeze Gate Setup

We generate the squeezing by the external pumping of the SQUID, through parametric resonance $\omega_d = 2\bar{\omega}_1$

From the Hamiltonian:

In the Interaction representation and after the RWA

Universal Gate

 $\hat{U}(t) := \mathbf{C-Sqz}(r, \theta)$. \blacksquare It applies a squeezing operation $\hat{S}(r, \theta)$ conditioned on the state of the qubit

It satisfied the following condition when combined with the Displacement operator

$$\hat{D}(\gamma): \, \hat{S}(r,\theta)\hat{D}(\gamma)\hat{S}^{-1}(r,\theta) = \hat{D}(\gamma')$$

Which means that applying a displacement operator $\hat{D}(\gamma)$ in between two squeezing operators $\hat{S}^{-1}(r,\theta)$ y $\hat{S}(r,\theta)$ is equivalent to the application of a different displacement operator

The above relation among operators can be extended to control gates

$$\hat{D}^{-1}(\gamma)\mathbf{C}-\mathbf{Sqz}(r,\theta)\hat{D}(\gamma)(\mathbf{C}-\mathbf{Sqz})^{-1}(r,\theta) = \mathbf{C}-\mathbf{Dsp}(\gamma'-\gamma)$$

The universality of \mathbf{C} - $\mathbf{Dsp}(r, \theta)$ implies the universality of \mathbf{C} - $\mathbf{Sqz}(r, \theta)$

What does Universality mean?

Combined with: $C - Sqz(r, \theta)$

Single qubit operations

Gaussian operations in the resonators

Qubit measurements

Can be used to create any quantum state of the qubit-resonator system

Controlled Squeezed Gate is universal if and only if Controlled Displacement Gate in universal

A Controlled Squeeze Gate can be implemented with trapped ions

PHYSICAL REVIEW A 101, 052331 (2020)

State-dependent motional squeezing of a trapped ion: Proposed method and applications

Martín Drechsler⁰,¹ M. Belén Farías,² Nahuel Freitas,² Christian T. Schmiegelow,^{1,*} and Juan Pablo Paz¹ ¹Departamento de Física, FCEyN, UBA and IFIBA, UBA CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina ²Physics and Materials Science Research Unit, University of Luxembourg, Avenue de la Favéncerie 162a, L-1511 Luxembourg, Luxembourg

(Received 23 October 2019; accepted 8 April 2020; published 18 May 2020)

We show that the motion of a cold trapped ion can be squeezed by modulating the intensity of a phase-stable optical lattice placed inside the trap. The method we propose is reversible (unitary) and state selective: it effectively implements a controlled-squeeze gate. This resource could be useful for quantum information processing with continuous variables. We show that the controlled-squeeze gate can prepare coherent superpositions of states which are squeezed along complementary quadratures. Furthermore, we show that these states, which we denote "X states," exhibit a high sensitivity to small displacements along two complementary quadratures, which makes them useful for quantum metrology.

 $|\chi_{\pm}\rangle = \frac{1}{\sqrt{2}c_{\pm}}(|r,\tilde{\theta}\rangle \pm |r,\tilde{\theta}+\pi\rangle),$

Encoding quantum states in the resonator

Protocol

Fidelity

The fidelity is defined as
$$F = |\langle \Psi_{\text{ideal}} | \Psi_{\text{real}} \rangle|^2$$

Mean Fidelity (maximum)
$$\bar{F} = \frac{1+P_z}{2} + \frac{1-P_z}{2}\sqrt{1-\frac{1}{\cosh(2r)}}$$

 $P_z = \alpha^2 - \beta^2$

 $\bar{F} \ge 0.995 \rightarrow r \ge 2$

Purity values obtained are 97.3% (equator) and 99.3% poles

4. Summary

- > We presented a method for a universal quantum gate for Control Squeeze
- > Parametric resonance is turned on and off by the state of the qubit
- > Can be used for encoding quantum states in an error detectable way $\bar{F} \sim 1 e^{-2r}(1 P_z^2)/4$

A controlled-squeeze gate in superconducting quantum circuits

Nicolás F. Del Grosso,¹ Rodrigo G. Cortiñas,² Paula I. Villar,¹ Fernando C. Lombardo,¹ and Juan Pablo Paz¹ ¹Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina ²Department of Applied Physics and Physics, Yale University, New Haven, CT 06520, USA

We present a method to prepare non-classical states of the electromagnetic field in a microwave resonator. It is based on a controlled gate that applies a squeezing operation on a SQUID-terminated resonator conditioned on the state of a dispersively coupled qubit. This controlled-squeeze gate, when combined with Gaussian operations on the resonator, is universal. We explore the use of this tool to map an arbitrary qubit state into a supersposition of squeezed states. In particular, we target a bosonic code with well-defined superparity and photon loss is thus error detectable by nondemolition parity measurements. We analyze the possibility of implementing this using state-of-the-art circuit QED tools and conclude that it is within reach of current technologies.