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Introduction

General relativity is a very successful theory, but it is also a fundamentally classical
theory, in the sense that no probabilities are involved in discussing observables. A
simple dimensional argument tells us that its description of the physics breaks down
at the scale of the Planck energy, which is the unique combination of the fundamental
constants involved in the game, EP ≡

√
ℏc5/G ∼ 1019 GeV. Its extraordinary size is

due to the weakness of gravity. For reference, the typical energy scale probed by the
LHC is EW ∼ 104 GeV. Therefore, we definitely shall not see quantum gravity effects
in everyday life or any experiment currently built on Earth. Why should we care, then?

General relativity itself tells us to do so. Spacetime singularities are necessarily
present in classical solutions describing either gravitational collapse or cosmology. At
these singularities, the classical theory is incomplete, as it doesn’t predict a way of
prescribing boundary conditions. Therefore, a theory of quantum gravity is needed.

Black holes provide an arena where quantum gravity effects come sharply into focus.
They are a striking prediction of general relativity: regions of spacetime bounded by
a horizon out of which nothing can escape, and inside which lies hidden a spacetime
singularity. Yet, they are not just exotic curiosities, rather the result of quite generic
gravitational collapse, and they are real astrophysical objects observed in our universe.

Classically, a black hole is the perfect absorber, as it can emit nothing. However,
its defining features (geometry of the horizon, conserved charges) are related by a set
of equations that bear a striking resemblance to the laws of thermodynamics.

The analogy becomes physical once one includes quantum effects. Hawking studied
a black hole surrounded by a quantum field, and famously showed that it behaves like
a thermal object, whose temperature end entropy are fixed by the geometry of the
horizon.

Since then, understanding the thermodynamics of black holes has been one of the
key questions guiding research into quantum gravity, and it has led, among others, to
profound insights into quantum field theory in curved spacetime, the discovery of the
holographic nature of gravity, the development of gravitational path integral techniques,
and the statistical interpretation of black hole entropy.
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These notes provide a very concise and very biased introduction to the subject of
black hole thermodynamics.

We begin in section 1 with a review of some results in the classical description of
black holes, focusing in particular on the properties of Killing horizons. In section 2,
we use techniques from thermal quantum field theory to argue that an observer along
the orbit of a Killing vector with a Killing horizon would detect a temperature that
is directly related to the geometry of the horizon itself. We cover the Unruh effect,
originally concerning accelerated observers in flat space, and summarize the Hawking
effect, which is instead a phenomenon related to more general event horizons arising
from gravitational collapse. In section 3, we introduce a framework for the quantization
of gravity, the gravitational path integral, and we look at the thermodynamics of gravity
in anti-de Sitter spacetime. Finally, in section 4, we conclude with a brief review of
additional topics related to the gravitational path integral, and issues that had been
swept under the rug in section 3.

The literature on the topics of the course is enormous, a large number of lecture
notes and books exist, and I have drawn from them. I make no claim of originality for
the contents of the notes, besides the fact that the choice of topics and the presentation
is biased by my own (perhaps idiosyncratic) tastes. Most of the topics were developed
within the span of a decade between mid 1970s and mid 1980s. Many of the original
papers are beautifully written, are still relevant today and well worth reading. I try to
refer to the most relevant ones as we go along, and some have been reprinted in a single
book in [GH93]. For the global structure of the notes, and the presentation, I was very
influenced by the lecture notes by Harvey Reall [Rea20] and Simon Ross [Ros05].

As for additional lecture notes and books, I have found the following resources
useful.

On black hole mechanics and thermodynamics via quantum field theory on curved
spacetime (sections 1 and 2)

• Birrell, Davies, Quantum Fields in Curved Space [BD84]

• Fulling, Ruijsenaars, Temperature, periodicity and horizons [FR87]

• Jacobson, Introduction to quantum fields in curved space-time and the Hawking
effect [Jac03]

– 3 –



• Reall, Part 3 Black Holes [Rea20]

• Ross, Black hole thermodynamics [Ros05]

• Townsend, Black holes: Lecture notes [Tow97]

• Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermody-
namics [Wal95]

• Witten, Introduction to black hole thermodynamics [Wit24]

On Euclidean quantum gravity approach and applications (sections 3 and 4)

• Hawking, Euclidean Quantum Gravity [Haw78]

• Hawking, The path integral approach to quantum gravity [Haw79]
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1 The laws of black hole mechanics

1.1 Rindler horizon

We begin, counterintuitively for a course on black holes, with flat two-dimensional space

ds2 = −dt2 + dx2 , (1.1)

and we look at an observer experiencing a constant acceleration α (in her frame). Her
worldline parametrized by proper time s is (with an appropriate choice of origin)

t =
1

α
sinhαs , x =

1

α
coshαs , −t2 + x2 = α−2 , (1.2)

so it’s the hyperbola with asymptotes {t = x , t = −x} represented in Figure 1. The
tangent to the worldline is

b = (sinhαs , coshαs) = α

(
x
∂

∂t
+ t

∂

∂x

)
, (1.3)

with length b2 = −1, and the magnitude of the proper acceleration Aa = ∇bba is indeed
α2. From our frame, we see her approach (and never get to) the speed of light, and
in her frame, eventually she’s going to be able to receive information from the entire
region {x > t}, but nothing left of the line {x = t}, which is why we refer to this line as
the Rindler horizon. This shows that the physics measured by the accelerated observer
is quite different from that seen by an inertial one, e.g. with worldline {t = s , x = 0},
but there is a easy way of getting rid of the Rindler horizon: she could simply stop
accelerating.

Now we generalize slightly, and consider now the family of observers corresponding
to all the orbits of ba in (1.3). These are the hyperbolas {−t2+x2 = constant}, including
the degenerate case of the straight asymptotes {t = x}, {t = −x}. We remark two
important properties of ba: first, since we are in flat space, it is easy to notice that

∇µbν = α

(
0 1

−1 0

)
, (1.4)

so ba is a Killing vector (in fact, it’s the generator of boosts). Moreover, its length is
not constant: b2 = −α2(x2 − t2). This signals that the observers are not “free.” It’s a

– 5 –



t

x

Figure 1: The worldline of an accelerated observer in flat space.

general property of motion along a Killing vector field ξa that it describes a geodesic if
and only if the norm is constant, since

ξb∇bξ
a = −ξb∇aξb = −1

2
∇aξ

2 , (1.5)

so the integral curve of ξa is an affinely parametrized geodesic if and only if ξ2 is
constant. In the case of the generator of the boosts, it’s timelike only on the two
wedges R and L in Figure 2, null on the two lines N ≡ {t = x} ∪ {t = −x}, with the
origin being a special point where ba vanishes, and becomes spacelike in the top and
bottom wedges (this is also clear from the orbits).

Focus on the wedges R and L, where ba is timelike, and consider an observer along
an orbit of ba, with normalized velocity ua = 1√

−b2
ba. Her proper acceleration is

Aa = ∇uua =
1√
−b2

bb∇b
ba√
−b2

=
1

−b2
bb∇bba = − 1

−b2
bb∇abb = ∇a log

√
−b2 , (1.6)

with magnitude
A =

1√
x2 − t2

.

So, the magnitude of the proper acceleration measured by each observer is constant,
though it changes from orbit to orbit. In particular, it’s α2 on the orbit we started with,
where b2 = −1, vanishes at spatial infinity (x → ∞), and diverges on the asymptotes
N . This is the acceleration measured by an accelerometer carried by each observer,
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Figure 2: Minkowski spacetime with the wedges determined by the norm of the boost
Killing vector ba. In blue are two loci of constant ξ, which are trajectories of the Rindler
observers following orbits of ba. In purple are two loci of constant η.

but it’s not the acceleration measured by an observer “at infinity.” We introduce this
in a more general way that will be useful later.

If ka is a timelike Killing vector field (in an asymptotically flat spacetime), and
there’s a particle with velocity u, we define the “energy per unit mass measured at
infinity” to be E∞ = −u · k. It is a constant if the particle moves along a geodesic,
but we’re interested in the motion along an accelerated trajectory. Interestingly, we
are in fact considering motion along an orbit of ka itself (i.e., a stationary observer), so
E∞ =

√
−k2, in which case

∇aE∞ = ∇a

√
−k2 =

√
−k2Aa , (1.7)

where Aa is the proper (local) acceleration measured by the stationary observer, as
showed in (1.6). By construction, this is the force per unit mass measured at infinity,
so we find the relation

A∞ =
√
−k2A . (1.8)

We can interpret this relation physically: the acceleration of the stationary observer
requires a force, which we can imagine being provided by some observer at infinity.
The force measured locally by the accelerating observer will be different from that of
the observer at infinity, because of a “redshift” factor due to the gravitational pull. In
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the case of the Rindler observer, we find that

A∞ = α . (1.9)

Importantly, this is constant even as x → |t|, we get closer to the horizon, and the local
acceleration diverges.

Another important property of ba is that it is normal to N . This can be more
easily seen introducing the light-cone coordinates

U = t− x , V = t+ x , ⇒ ds2 = −dUdV , b = α

(
V

∂

∂V
− U

∂

∂U

)
. (1.10)

Indeed

ba =
α

2
(−V dU + U dV )a =

−α
2
V (dU)a U = 0

α
2
U (dV )a V = 0

, (1.11)

which shows that it’s normal to N .1

Since b2|N = 0, its derivative is normal to N and hence proportional to ba: indeed we
have

b2 = α2V U ⇒ ∇ab
2 =

−2α ba U = 0

2α ba V = 0
. (1.12)

Finally, before leaving our accelerating observer, we define a set of adapted coordinates,
that is, coordinates (η, ξ) such that b = ∂η: one such choice that covers the wedge R is

t =
eαξ

α
sinhαη , x =

eαξ

α
coshαη , η =

1

α
log

x+ t

x− t
, ξ =

1

α
logα

√
x2 − t2 .

(1.13)
Note that η and ξ range from −∞ to +∞, though they only cover the wedge R:
going back to figure 2, the hyperbolas in blue are the orbits of b = ∂η corresponding to
constant ξ, and the straight purple lines correspond to constant η. In these coordinates,
the Minkowski metric (1.1) has the form

ds2 = e2αξ
(
−dη2 + dξ2

)
. (1.14)

Looking at this form, we confirm indeed that these coordinates, though defined along
the worldline of the observer, are not inertial, as we would expect, since the observer

1If f is a function, the normal to the set {f = constant} is proportional to df .
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is accelerated. However, as it’s always the case, they are locally inertial: here, in a
neighbourhood of ξ = 0, corresponding to the original worldline (1.2), x2 − t2 = α−2.

Rindler coordinates are often presented in a slightly different way, trading ξ for
ρ = eαξ/α > 0. Then, the metric has the form

ds2 = −α2ρ2 dη2 + dρ2 . (1.15)

In these coordinates, which cover the right wedge, the Killing horizon is at ρ = 0. We
shall see (1.15) appear when looking close to the event horizon of a black hole in section
2.4.

1.2 Schwarzschild horizon

The geometry of the Rindler horizon is characteristic of black holes. Look at the
Schwarzschild metric2

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2 dΩ2

2 ,

f(r) ≡ 1− 2M

r
, ds2(S2) = dθ2 + sin2 θ dϕ2 ,

(1.16)

where the coordinates have ranges t ∈ R, r > 2M , θ ∈ [0, π), ϕ ∈ [0, 2π) (the latter two
covering a 2-sphere). There is a timelike Killing vector field k = ∂t, with non-constant
norm k2 = −f(r). This means that the motion of the stationary observer along ka is
not “free,” as it is not along geodesics.

Famously, the apparent singularity at r = 2MG is only a coordinate singularity,
and one can construct a maximal extension covered by the Kruskal–Szekeres coordinates
(U, V, θ, ϕ) with3

ds2 = −32M3e−r(U,V )/(2M)

r(U, V )
dUdV + r(U, V )2 dΩ2

2 , (1.17)

where U, V ∈ R and r(U, V ) is the unique solution to

UV = −er/(2M)
( r

2M
− 1
)
. (1.18)

2In fact, the Schwarzschild metric is the most general spherically symmetric solution to the Einstein
equations (a statement going under the name of Birkhoff theorem), so it doesn’t just describe a
spherically symmetric static black hole, but also the outside of any spherically symmetric configuration,
including a spherical gravitational collapse.

3Coordinates covering the maximal analytical extension had also been independently introduced
by Synge (1950) and Fronsdal (1959), before Kruskal (1960) and Szekeres (1960) [MTW73].
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r =const
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Figure 3: Maximal analytic extension of the Schwarzschild black hole, covered by the
coordinates (U, V ) (each point represents a two-sphere). In blue is a locus of constant
r > 2M , corresponding to an orbit of k = ∂t. In purple is a locus of constant t. The
event horizon {r = 2M} is the union of the two axes {U = 0} ∪ {V = 0}, and the
singularity r = 0 is in red.

A diagram of the U − V plane is in Figure 3, where each point represents a two-sphere
in the four-dimensional geometry, and the subset covered by the original Schwarzschild
coordinates in (1.16) is the right wedge {U < 0, V > 0}. We have also drawn an orbit
of ka at constant r > 2M (in blue) and a straight line corresponding to constant t.
Looking at (1.18), we see that the red hyperbola UV = 1 corresponds to r = 0, whereas
the axes UV = 0 correspond to {r = 2M}, the coordinate singularity in (1.16). Note
the similarity between the worldlines of the stationary observers along k in Figure 3
and those along b in Figure 2. Again, there is a part of spacetime (namely U > 0) from
which no information can reach an observer along on orbit of k with U < 0, so {U = 0}
acts as a horizon.

It’s also straightforward to compute the proper acceleration and the acceleration
measured at infinity using (1.6) and (1.8)

A =
1√
f(r)

M

r2
, A∞ =

M

r2
. (1.19)

As for the Rindler horizon, A diverges near the Schwarzschild horizon, meaning that
the local acceleration measured by an observer near the Schwarzschild horizon would
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diverge. However, if this observer was held by an observer “at infinity,” the latter one
would only measure a finite value A∞ = 1

4M
.

To conclude the analogies between the two spacetime, we remark that in the Kruskal
coordinates, ka has the form

k =
1

4M

(
V

∂

∂V
− U

∂

∂U

)
, (1.20)

which is entirely analogous to (1.10), including the fact that the constant prefactor is
A∞|horizon. We see that ka is a well-defined Killing vector field on the entire Kruskal
spacetime, its norm is k2 = f(r) even on the extension, and so it’s timelike for r > 2M ,
spacelike if 0 < r < 2M , and null on N = {r = 2M} = {UV = 0}, with a special locus
at {U = V = 0} where the Killing vector vanishes tout court. It is then straightforward
to find the analog of (1.11), showing that ka is again normal to N , and to show that

∇ak
2 =

− 1
2M

ka U = 0

1
2M

ka V = 0
. (1.21)

Therefore, we have found an analogous structure in the two cases, which is worth
defining more generally. We define a Killing horizon to be a null hypersurface N such
that there is a Killing vector ξa normal to it. In fact, we are mostly interested in a
special class of Killing horizons: a bifurcate Killing horizon is the union of two null
hypersurfaces that are both Killing horizons intersecting at a codimension-2 spacelike
surface, the bifurcation surface, where the Killing vector ξ vanishes.

Since ξ2 = 0 on a Killing horizon, its gradient must be proportional to ξa itself
(which is normal to N ): we refer to the proportionality constant κ as surface gravity

∇aξ
2|N = −2κ ξa|N ⇒ ξb∇bξ

a|N = κ ξa|N . (1.22)

The name is justified by the fact that κ is the limit at the horizon of the force per unit
mass measured at infinity (1.8).

Notice that the surface gravity is not a property of the Killing horizon alone, as
it depends on the normalization of the Killing vector: N is a Killing horizon also for
cξa for any real c, and the surface gravity would be cκ. Therefore, in order to assign a
physical meaning to the surface gravity, we should also specify a normalization for ξa.
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In the two cases considered earlier, we find from (1.12) and (1.21) that4

Rindler horizon b2 = −α2(x2 − t2) , κ = ±α ,

Schwarzschild horizon k2 = −1 +
2M

r
, κ = ± 1

4M
.

(1.23)

Note the difference: in the Rindler case, there is no canonical normalization of the
Killing vector defining the horizon, which is there in the Schwarzschild case, since ka

generates (future-directed) time translations, normalized to have length −1 “at infinity.”

So, we see that though both cases have the structure of a bifurcate Killing horizon,
they are different. This is good: one spacetime is flat and the other isn’t, so shouldn’t
describe the same physics. How can we formalize the this intuition?

First, consider a family of observers, i.e. a family of (inextendible) timelike curves
{γα}, then a non-empty boundary of the chronological pasts of their union ∂I− (

⋃
α γα)

is called a future event horizon. The future event horizon of the family of observers
along orbits of ba in the right wedge of Minkowski space in Figure 2 is {U = 0, V > 0}.
The same equation also describes the future event horizon of the family of observers
along orbits of ka as in Figure 3. However, physically, we know that there is a big
difference between the two cases: in Minkowski space, if the observer stops accelerating
and moves on a geodesic, e.g. an orbit of ∂t, then her chronological past includes
the entire spacetime. In contrast, in the Kruskal spacetime there is no observer that
escapes at arbitrarily large distances at arbitrarily late times that is able to receive
information from the region {0 < r < 2M}. Slightly more formally, we introduce a
notion of asymptotic (null) infinity I +, where null geodesics end, and define a black
hole as the region of spacetime that doesn’t belong to the chronological past of I +,
that is

B ≡ M \ I−(I +) . (1.24)

The future event horizon is the boundary ∂B. In the Kruskal spacetime, there is a
black hole region corresponding to {0 < r < 2M}, which is not there in the (flat)
Rindler spacetime.

4We can avoid the different sign on {U = 0} and {V = 0} if we define the surface gravity on
{V = 0} with the opposite sign in (1.22). This is justified by the fact that on the portion of {V = 0}
and {U = 0} to the future of the bifurcation surface, ξa necessarily has opposite directions.
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1.3 Killing horizons

We have showed by analysis of the analytic metric that the event horizon of the
Schwarzschild black hole is a bifurcate Killing horizon. However, the relation runs
deeper: it is possible to show that the future event horizon of an asymptotically flat
stationary black hole with κ ̸= 0 is always a portion of a bifurcate Killing horizon, in
presence of “physically interesting” matter.5 Indeed, this holds for all the known black
hole solutions with κ ̸= 0, and in particular for the Kerr–Newman black hole, which
is the unique black hole solution in four-dimensional Einstein–Maxwell theory with a
Killing vector that is timelike in a neighbourhood of asymptotic infinity (that is, it’s
stationary). The other (very interesting!) possibility is a degenerate Killing horizon,
defined as one with κ = 0.

This quite general characterization of black hole event horizons allows us to identify
properties of these null hypersurfaces that don’t rely on knowing the analytic solutions,
and in fact hold much more broadly than within general relativity. They are often re-
ferred to as “laws of black hole mechanics,” from a 1973 paper by Bardeen, Carter and
Hawking [BCH73]. The precise statements of the laws vary somewhat depending on
assumptions and setups, but the overarching message is that even at the level of clas-
sical physics, black holes exhibit a striking analogy with an ordinary thermal system.
Such analogy is non-sensical at the level of classical physics, since by definition a black
hole absorbs radiation but never emits it: «the effective temperature of a black hole is
absolute zero. [...] a black hole can be said to transcend the second law of thermody-
namics» [BCH73]. As we will see in the next section, things are very different once we
include quantum effects.

Zeroth law The surface gravity is constant on a bifurcate Killing horizon.
Notice that this statement requires the change in sign mentioned in footnote 4. To

prove this, one first uses Frobenius theorem to find an expression for κ2

κ2 = −1

2
∇aξb∇aξb|N , (1.25)

5The proper way to say this is to assume that the matter with stress-energy tensor Tab satisfies the
dominant energy condition, that is, −T a

bV
b is a future-directed causal or zero vector for any future-

directed timelike vector V a. This guarantees that an observer along V a would not measure a spacelike
energy-momentum current −T a

bV
b.
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from which we can show that the variation of κ along a vector field ta that is tangent
to N is

κtc∇cκ = −∇aξbtc∇c∇aξb|N
= −∇aξbtcRbacdξ

d|N
(1.26)

Here we used the so-called Killing vector lemma. Choosing ta = ξa shows that κ is
constant along an orbit of ξa in N , so it’s constant along each generator of N . Moreover,
κ is also constant on the bifurcation surface: if we restrict to the bifurcation surface,
and choose ta to be a tangent vector, the derivative still vanishes because by definition
ξa vanishes on the bifurcation surface. So, κ is constant everywhere on N [KW91].

Note that the constancy of κ follows directly from the geometry of bifurcate Killing
horizons, so it will apply to any horizon in any theory, provided it can be extended to
a portion of a bifurcate Killing horizon. However, in the context of general relativity,
it is also possible to prove directly that κ is constant on the (connected) future event
horizon (not necessarily bifurcate) of a stationary black hole obeying the dominant
energy condition [BCH73].

First law We can formulate a statement in any theory expressed by a Lagrangian
L that is only a functional of gab and other fields Φ, the Riemann tensor Rabcd, and
symmetrized covariant derivatives of Rabcd and of the fields Φ. This is the form of the
Lagrangian (if one exists) of any diffeomorphisms-invariant theory.

We begin with an asymptotically flat stationary black hole solution with a bifurcate
Killing horizon, and consider a (not necessarily stationary), asymptotically flat solution
of the linearized equations of motion around said solution. Then the following relation
between quantities in the perturbation holds

κ

2π
δS = δM − ΩiδJi − ΦαδQα . (1.27)

Here

• κ is the surface gravity of the bifurcate Killing horizon of the black hole

• S is defined as follows. Let Σ be the codimension-2 bifurcation surface, with
binormal nab (that is, the volume element on the normal space to Σ in spacetime).
Then

S ≡ −2π

∫
Σ

δL
δRabcd

ncdϵabc3···cn , (1.28)
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where we have taken the functional derivative of L with respect to Rabcd holding
fixed all the other fields (including the metric).

• M , Ji and Qα are, respectively, the ADM mass, the ADM angular momenta, and
the electric charges, of the stationary black hole solution, and Ωi and Φα are the
conjugate angular velocities and electrostatic potentials of the horizon.

We will not prove this form of the first law, which is due to Iyer and Wald [IW94], but
limit ourselves to a few comments.

First, note that we did not need to know anything about the analytic form of the so-
lutions, apart from the fact that they solve the equations of motion, and their geometry
(that is, we assume that we are discussing black holes with a bifurcate Killing horizon).
Moreover, the statement of the first law is a highly non-trivial relation between quanti-
ties measured at the horizon (namely, κ and S) and quantities measured at asymptotic
infinity (namely, the ADM and electric charges). These two observations go hand-in-
hand. The way to prove the theorem is realizing that in all diffeomorphism-invariant
theories there is an exact (n − 1)-form that can be integrated over a hypersurface
extending from the bifurcation surface to asymptotically flat infinity (its existence is
guaranteed by the assumptions on the geometry). We then use Stokes’ theorem to com-
pute the vanishing integral, thus relating the contribution from the internal boundary
(the bifurcation surface) and that from the asymptotic (n − 2)-sphere, which is then
expressed in terms of asymptotic conserved charges.

One highly non-trivial step in the proof is recognizing the contribution from the
bifurcation surface in terms of variations of S in (1.28), the so-called Wald entropy. For
general relativity, we have the Einstein–Hilbert action

L =
1

16π
R vol =

1

16π
gacgbdRabcd vol , (1.29)

from which
S = −1

8

∫
Σ

gacgbdncdϵabc3···cn =
1

4

∫
Σ

volΣ =
1

4
Ah , (1.30)

which, as we will review in section 2.1, is the famous expression for the entropy of black
holes due to Bekenstein–Hawking.

Second law In contrast to the First law, the formulation of the Second law is much
more restricted. In the context of four-dimensional general relativity, it also goes under
the name of Hawking’s area law [HE23].
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In a strongly asymptotically predictable spacetime (i.e., provided we have sufficient
control over the time evolution) satisfying the Einstein equations with matter satisfying
the null energy condition (i.e. with “reasonable” matter), the area of the horizon does
not decrease in time.

In order to generalize this result to more general theories that include derivatives
or powers of the curvature, we would need to find a local functional of the geometry
of the horizon that is non-decreasing in time evolution and for stationary spacetime
reduces to the Wald entropy (1.28). As it turns out, this is a tall order: for instance, the
definition (1.28) could suffer from ambiguities [JKM93], and even resolving them results
in a non-decreasing functional only for linear perturbations [Wal15] or in a restricted
sense [DR23].

Third law In the original paper [BCH73], there was also a conjectural third law of
black hole mechanics, which, in the later formulation by Israel, stated

A subextremal black hole cannot become extremal in finite time by any continu-
ous process, no matter how idealized, in which the spacetime and matter fields remain
regular and obey the weak energy condition.

Quite recently, this conjecture was shown to be false by Kehle and Unger, who
constructed spherically symmetric solutions to Einstein–Maxwell theory with a massless
charged scalar that are Schwarzschild near the horizon for a period of advanced time,
and then evolve to be exactly an extremal Reissner–Nordström black hole in a finite
amount of time [KU22]. It is still possible to rule out these counterexamples, and
thus maintain a third law in the formulation above, if one assumes that the matter
stress-energy tensor is constrained by a stronger condition then the dominant energy
condition, which takes the form of a bound on the charge to mass ration [Rea24].

There is another statement of the third law of thermodynamics, which states that
as as the temperature goes to zero, the entropy goes to a universal constant determined
by the degeneracy of the ground state of the system. Understanding how to make sense
of this statement in the context of black holes requires taking into account quantum
effects, and therefore it is beyond the scope of this section.
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2 Hawking radiation and black hole thermodynamics

2.1 The laws of black hole thermodynamics

Classical results on the mathematical theory of black holes in 4d imply that gravi-
tational collapse of an isolated body, though temporarily a messy and complicated
process, where this body rotates, pulsates and throws matter in the universe, settles
into a stationary black hole configuration described by the Kerr–Newman solution.
Therefore, independently of the (potentially quite complicated) initial state, the final
state of the system on and outside the event horizon is completely described by three
physical quantities (M,J,Q): mass, angular momentum and electric charge.

This is quite puzzling, as it seems to contrast with thermodynamics. Take an object
with entropy (say a container filled with gas) and throw it in the black hole: after the
object has crossed the event horizon, no signal from it can reach us far from the black
hole, and thus the entropy of the universe has effectively been lowered.

This contradicts the Second Law of Thermodynamics, which is not good. This
concern was shared by Bekenstein who came up with a revolutionary solution to the
problem: black holes themselves have an entropy, and the total entropy of the black
hole and of the universe outside the event horizon does not decrease [Bek72, Bek73].

What should the entropy of the black hole be? Bekenstein’s idea was to look at
information theory. Loosely speaking, in information theory, the entropy of a system
is a measure of lack of information about its internal configuration. Analogously, the
entropy of a black hole is a measure of the inaccessibility of information to an outside
observer about the internal configurations of the black hole. Thus, given a choice of
mass, angular momentum and electric charge, the entropy of the black hole is a measure
of the size of its equivalence class. In hindsight, it measures the number of quantum
mechanical microstates, but this was not clear at all at the time.

Moreover, Bekenstein observed that Hawking had already proved that there is a
quantity characteristic of a black hole that can never decrease: the area of its horizon (cf.
the second law of black hole mechanics). Therefore, guided again by the analogy with
the Second Law, he suggested that the entropy of a black hole should be proportional
to its area. He even pointed out that using only general relativity (that is Newton’s
constant) we cannot construct a combination with dimensions of length square that
would allow us to obtain the (dimensionless) entropy, and we have to resort to quantum
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mechanics, obtaining the remarkable prediction that a black hole with horizon of area
Ah would be associated to an entropy6

Sbh = ηAh
c3

Gℏ
, (2.1)

where η is a dimensionless number, unspecified at this stage, and the combination
ℓP =

√
Gℏ/c3 is the Planck length.

Contemporaries immediately realized the importance of Bekenstein’s observation,
but were very skeptical of the physical interpretation.7 In fact, Bardeen, Carter and
Hawking pushed even further the analogy between black hole mechanics and thermo-
dynamics, writing down the first version of the laws introduced in section 1.3 [BCH73].
Specifically, the first law of black hole mechanics (1.27) for a 4d Kerr–Newman black
hole, with Wald’s entropy evaluated for the Einstein–Hilbert action as in (1.30), is

δM =
κ

8π
δAh + Ω δJ + Φe δQ , (2.2)

where Ah is the area of the horizon, Ω is the angular velocity of the horizon and Φe is
the difference of electrostatic potential measured between asymptotic infinity and the
horizon.

Compare with the First Law of thermodynamics: in any process involving a closed
system with energy E, entropy S and charges Qi, their variations are related by

dE = T dS +
∑
i

µi dQi , (2.3)

where T is the temperature and µi are the chemical potentials associated to Qi. In
order to push further the analogy between black hole mechanics and thermodynamics
suggested by the Bekestein’s formula (2.1), we identify mass and energy of the black
hole, we recall that indeed (J,Q) are conserved charges, and (Ω,Φe) are the conjugate
variables, but then we should associate a temperature to the black hole8

Tbh =
κ

8πη

ℏ
c
. (2.4)

6In this expression, we reinstate c, G and ℏ, keeping kB = 1, so S is dimensionless, since [c] = LT−1,
[G] = L3M−1T−2, [ℏ] = ML2T−1.

7A whirlwind account of the events of the time is at the beginning of [Pag04].
8Here again we reinstate c, G, ℏ, knowing that κ is an acceleration, e.g. for Schwarzschild κ =

c4/(4MG), and since kB = 1, [Tbh] = ML2T−2.
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We also notice that this identification would be consistent also with the other laws of
black hole mechanics: surface gravity is constant on a bifurcate Killing horizon, just
like temperature is constant on a system in thermal equilibrium; and the third law in
the formulation of the original paper is parallel to one of the formulations of the third
law of thermodynamics.

However, as already remarked by [BCH73], «a black hole cannot be in equilibrium
with black body radiation at any non-zero temperature, because no radiation could be
emitted from the black hole whereas some radiation would always cross the horizon into
the black hole.» In fact, temperature is (always) a quantum effect (as shown in (2.4)
by the presence of ℏ), so in this chapter we will look at the quantization of fields on a
curved background without Poincaré isometries. As it turns out, this is quite subtle,
and will eventually lead us to the proof that black holes are indeed thermodynamical
objects emitting with a blackbody spectrum with temperature [Haw74]

TH =
κ

2π

ℏ
c
, (2.5)

This also fixes the constant η = 1/4 in (2.1), consistently with (1.30). Knowing this,
we can interpret the four laws of black hole mechanics reviewed in section 1.3 as truly
laws of black hole thermodynamics.

2.2 Quantum field theory on curved spaces

In order to show that black holes have a temperature, we need to investigate the
behaviour of quantum field theory near the horizon. The issue is that this requires
studying quantum field theory on a curved background, which is subtle.

When one first studies the quantization of a scalar field, one does so by considering a
basis of plane wave solutions of the Klein–Gordon equation that have positive frequency,
that is they are functions up such that

iL∂tup = ω up , ω > 0 . (2.6)

On the space of positive-frequency solutions, one can introduce an inner product that
is non-degenerate, Hermitian and positive-definite. One then expands a scalar field
on orthonormal elements up and up, and promotes the coefficients of the expansion
to operators, ap and a†p, which satisfy the algebra of the creation and annihilation
operators. The Hilbert space of the theory is then defined to be the symmetric Fock
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space: the vacuum |0⟩ is defined to be the state annihilated by all ap, and the other
states are constructed by successive applications of a†p.

One immediate problem with the generalization of this approach to a curved back-
ground is that, even assuming a good causal structure (global hyperbolicity), there is
no guarantee that there is a globally timelike Killing vector that could play the role of
(∂t)

a in (2.6) and define the positive-frequency subspace. But this is needed to define
the annihilation operators, so there is no well-defined notion of “vacuum.” Therefore,
there is no sensible interpretation of the states of the Hilbert space as “containing a
fixed number of particles.” This looks like a radical departure from the case of flat
space, but recall that we are doing quantum field theory. This is of course related to
the concept of “particle,” but as we see not equivalent. In fact, even on flat space it
would be wrong to interpret the “vacuum” as the state characterized by the absence of
fluctuations, and “particle” may not be a useful concept. Talking about the presence of
a particle also requires talking about the state of motion of the detector, because the
mode decomposition (and consequently the notion of vacuum and particles) is global in
nature. The canonical plane waves are agreed upon by all inertial detectors, who will
thus also agree on a definition of the vacuum. However, this is not true for accelerating
observers.

A better notion would be provided by a local quantity, such as the stress-energy
tensor ⟨Tab(x)⟩: if ⟨Tab(x)⟩ = 0, then the canonical transformations of tensors following
diffeomorphisms would leave this invariant, and thus different observers would agree
on the result.

In a sense, this shows that we’re using the wrong approach. Just as there is no
preferred coordinate system in general relativity, where coordinate systems are irrele-
vant, so we conclude from our observations that there is no preferred Hilbert space of
states when discussing quantum fields on spacetime. The corresponding mathemati-
cal statement is the Stone–von Neumann theorem: for systems with finite number of
degrees of freedom there is a unique way (modulo unitary equivalence) of representing
the canonical commutation relations on a Hilbert space, but this is not true for systems
with an infinite number of degrees of freedom. In flat spacetime, this issue is avoided
because Lorentz symmetry selects a preferred representation.

There is a way of introducing and discussing general relativity in a manifestly
diffeomorphism-invariant way (which is the way we all learnt it): is there a way of
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presenting quantum field theory without referring to the construction of a Hilbert
space? Yes, it’s the algebraic approach, in which the key role is played by the algebra
of observables, and states are defined by the value of each observables (rather than the
number of particles). In a more mathematical rephrasing, a quantum field theory is an
assignment of an algebra of observables to each subset of spacetime, and a state is a
linear map from the algebra of observables to C that is normalized and positive. Notice
that indeed the Hilbert space realization of the algebra of observables is not relevant
to the discussion, though we can construct one (following an approach first written by
Gelfand, Naimark and Segal).

We will not delve into algebraic quantum field theory, because it’s too sophisticated
for the questions we want to address. Instead, in the next section we will focus on the
properties that define a thermal from the expectation value of the two-point function.
However, we note that algebraic quantum field theory has been successful in providing
rigorous proofs of the Unruh and Hawking effect for free theories, and establishes a
mathematically sound framework to discuss questions such as the definition of the
entropy of quantum field theories. It is once again an active field of research, after
some years of dormancy. To get a feeling for this approach, in addition to the book
[Wal95], one can read [HW14, Wit21].

2.2.1 The KMS condition

In the first courses in QFT, one usually describes correlators computed in the vacuum
state, which is a pure state, that is, a unique ray in the projective Hilbert space. A
system with finite temperature, instead, is a statistical ensemble of pure states: it’s a
mixed state described (only) by a density matrix.

As a concrete example, we look at a system with Hamiltonian H, and assume that
the energy is the only quantum number labelling pure states and allowed to vary, so we
are describing a system with temperature T in the canonical ensemble. The probability
that the system at temperature T is in a pure state with energy E is given by

pE =
e−βE

Z
, (2.7)

where β = 1/T , and Z is the canonical partition function of the system

Z(β) =
∑
E

e−βE = Tr e−βH . (2.8)
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The expectation value of any observable O at a temperature T is given by Gibbs’
formula, which writes it as a weighted average over the value of O on all the pure
states:

⟨O⟩β =
∑
E

pE ⟨E|O|E⟩ =
Tr
(
Oe−βH

)
Tr (e−βH)

. (2.9)

Notice that in order for this to make sense, both numerator and denominator must be
defined separately, which imposes restrictions on the spectrum of the Hamiltonian.9

Now consider two observables A and B that evolve according to the Heisenberg
picture

At = eiHtAe−iHt , Bt = eiHtBe−iHt . (2.10)

We define their correlators at time t as

Gβ
+(t,A,B) ≡ ⟨AtB⟩β = Z−1Tr

(
AtBe−βH

)
,

Gβ
−(t,A,B) ≡ ⟨BAt⟩β = Z−1Tr

(
BAte

−βH
)
.

(2.11)

This definition, and the following use of the properties of the trace, requires the trace to
be convergent, even if the operator is unbounded, and this is guaranteed, for instance,
by choosing a compact spatial manifold. These correlators are defined by the physics
for t ∈ R, but we can analytically extend them by defining a complex z = t+itE where
t and tE are both real, and using the Heisenberg picture

Gβ
+(z,A,B) = Z−1Tr

[
ei(z+iβ)HAe−izHB

]
,

Gβ
−(z,A,B) = Z−1Tr

[
BeizHAe−i(z−iβ)H

]
.

(2.12)

Requiring that the exponents have negative real parts restricts the domain of holomor-
phicity of these functions, namely they are holomorphic in

Gβ
+(z,A,B) −β < Im z < 0 ,

Gβ
−(z,A,B) 0 < Im z < β ,

(2.13)

and Gβ
±(t,A,B) is their limiting value when Im z → 0∓. In fact, more is true: provided

−β ≤ Im z ≤ 0, we can use the cyclity of the trace to show the functional relation

Gβ
+(z,A,B) = Gβ

−(z + iβ,A,B) . (2.14)
9For completeness, we write the result also using the density matrix. This is an operator defined

by
ρ =

1

Z
e−βH ,

and thus (2.9) can be also written as ⟨O⟩β = Tr ρO.
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This relation goes under the name of KMS condition (after Kubo and Martin–Schwinger).
It is sometimes also written in on the real axis as

⟨AtB⟩β = ⟨BAt+iβ⟩ . (2.15)

We can use the KMS relation (2.14) to construct a periodic function throughout
the plane apart from the lines Im z = ℓβ with ℓ ∈ Z, defined by

Gβ(z,A,B) = Gβ
−(z,A,B) 0 < Im z < β ,

Gβ(z,A,B) = Gβ
+(z,A,B) − β < Im z < 0 ,

(2.16)

and
Gβ(z,A,B) = Gβ

+(z − iℓβ,A,B) = Gβ
−(z − i(ℓ− 1)β),A,B) , (2.17)

for an appropriate integer ℓ. However, we still don’t know about its analyticity on the
real axis. On the other hand, if we preserve the causality requirements of relativistic
quantum field theories, then AtB = BAt for t in some open interval on the real axis, then
Gβ

±(t,A,B) are equal on that interval, and we can use the edge-of-the-wedge theorem10

to prove that Gβ
±(z,A,B) are analytic continuations of each other and thus define a

single holomorphic function on a connected region of the complex plane (excluding
parts of the lines Im z = ℓβ with ℓ ̸= 0). Thus, in thermal relativistic quantum field
theories (even interacting ones), using the Gibbs’ formalism we can construct a single
holomorphic function that is periodic in imaginary time, as guaranteed by the KMS
condition.

In fact, in the algebraic approach to quantum field theory this reasoning is turned
on its head, and the KMS condition is taken to be the defining property of the state of
thermal equilibrium at a temperature 1/β.

2.2.2 Unruh effect

As in the previous chapter, in order to appreciate subtleties of curved space, we begin
with free scalar quantum field theory on flat space, eventually taking the viewpoint of
the accelerated observer introduced in section 1.1.

10This is a generalization of Morera’s theorem applied to contours passing through the “window”
{Im z = 0, |Re z| <

√
⟨x,y⟩h}, and then breaking them along the real axis.
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We want to construct an analytic extension of the propagators (or Wightman func-
tions)11

G∞
+ (t,x,y) ≡ ⟨0|ϕ(t,x)ϕ(0,y)|0⟩ ,

G∞
− (t,x,y) ≡ ⟨0|ϕ(0,y)ϕ(t,x)|0⟩ .

(2.18)

We assume that the theory satisfies the causal requirements of relativistic quantum
field theory, so the commutators of the fields at spacelike separation vanishes, and we
have

G∞
+ (t,x,y) = G∞

− (t,x,y) |t| < |x− y| , (2.19)

therefore, we can repeat the discussion outlined in the previous section, and construct
a holomorphic function G∞(z,x,y) such that

G∞(z,x,y) =


G∞

− (z,x,y) Im z > 0

G∞
− (z,x,y) = G∞

+ (z,x,y) Im z = 0, |Re z| <
√
⟨x,y⟩h

G∞
+ (z,x,y) Im z < 0

(2.20)

and there may be branch cuts along the real axis for |Re z| > |x− y|. This is in fact a
function only of a continuation of the Lorentzian distance between the two points, that
is F (−z2 + |x− y|2), and F (w) is a holomorphic function of w except where w = 0,
that is, at z2 = |x− y|2.

Now consider the correlator as measured by the accelerated observer introduced in
section 1.1: she follows an orbit of the boost generator ba. If we are in dimension greater
than 2, we align the plane (t, x1) to the boost, and we introduce Rindler coordinates
on the right wedge of the plane, as in (1.15), via

t = ρ sinhαη , x1 = ρ coshαη . (2.21)

Then, the boost generator has the form b = ∂η, and we leave untouched the coordinates
that may be transverse the boost plane, that is x⊥. In these coordinates the flat space
Wightman function becomes

G∞(t,x,y)|Rindler coords = F (ρ2x + ρ2y − 2ρxρy coshαη + |x⊥ − y⊥|2) . (2.22)

11The superscript ∞ refers to the fact that they are computed at zero temperature, that is, at
infinite β = 1/T . In the next section we shall introduce a label β.
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We want to show that the resulting function is a holomorphic function with periodicity
β that is the analytic continuation of the propagators of a scalar field on Rindler
space, that is, we want to identify the right-hand side of the equation above with
Gβ

Rin(η, (ρx,x⊥), (ρy,y⊥)) and measure β. To do so, we need to perform an analytic
continuation to the complex plane, show that the resulting function has the appropriate
analytic structure (and in particular periodicity along imaginary translations) and that
its values along the imaginary axis are the Green’s function for the Wick rotation of
the Klein–Gordon propagator. This latter property would define it uniquely, because
the operator

(
∂2
tE

+
∑

i ∂
2
xi −m2

)
is elliptic, and its Green’s function is unique. This is

in constrast to the Lorentzian Klein–Gordon operator, which is hyperbolic, and there
are multiple Green’s functions corresponding to different boundary conditions (e.g.
Feynman’s, “retarded”, “advanced”).

We first extend (2.22) to the complex plane introducing ζ = η+iηE, and we observe
that this extension has poles at the spatial distance of the two points

coshαζ =
ρ2x + ρ2y + |x⊥ − y⊥|2

2ρxρy
, (2.23)

and is periodic with period 2π
α
i. Finally, we should show that the would-be G∞

Rin,E(ηE, (ρx,x⊥), (ρy,y⊥))

is the Green’s function for the Wick rotation of the Klein–Gordon propagator. But no-
tice that after Wick rotation, the Rindler coordinates (2.21) are just polar coordinates
in a Euclidean two-dimensional space

tE = ρ sinαηE , x1 = ρ cosαηE , (2.24)

so the Wick-rotated differential operator is just a rewriting in polar coordinates of
the flat Klein–Gordon operator, for which G∞

E (t,x,y)|polar coords is the Green’s function
(reading (2.22) right to left).

Therefore, we confirm that for the Rindler observer, the Minkowski vacuum state
behaves like a thermal state with temperature

T0 =
α

2π
. (2.25)

This result is not restricted to the free scalar theory we just looked at, but can in fact
be generalized using algebraic QFT to an arbitrary interacting quantum field theory
on flat space (a result proved by Bisognano and Wichmann).
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As a matter of fact, this is not the actual temperature measured by the accelerated
observer. Recall that the worldline of a Rindler observer has tangent vector b = ∂η, so
the normalized four-velocity according to the metric (1.15) is

ua =
1

αρ

(
∂

∂η

)a

=
1

αρ
ba . (2.26)

On the other hand, the frequency ω above is measured using directly ba. Therefore, the
frequency measured by the observer is ωobs = ω/(αρ), leading to a Planck spectrum

1

e2πωobsrho − 1
, (2.27)

and thus to the Unruh temperature12

TU =
ρ−1

2π
=

|A|
2π

, (2.28)

where A is the magnitude of the proper acceleration of the observer. Notice that an
observer at infinity, for which ξ → +∞, will find TU → 0, which is sensible, because
the spacetime we are working on it’s still just Minkowski.

The peculiar phenomenon we just discovered is named Unruh effect : in flat space,
the vacuum defined by an inertial observer will be perceived by an accelerated observer
as a thermal state with temperature (2.28). This is a physical effect: an acceler-
ated observer with a particle detector will indeed detect particles. [As you will see

in exercise (), the Minkowski vacuum is not a pure state for the Rindler

observer.] However, there is no paradox or contradiction: the mode decomposition
(and consequently the notion of vacuum and “particles”) is global in nature, and it
requires knowledge of the observer’s history. A better notion would be provided by
a local quantity, such as the stress-energy tensor ⟨0M |Tab|0M⟩: if the inertial observer
measures ⟨0M |Tab|0M⟩ = 0, then the stress-energy tensor measured by the accelerated
observer, or any other observer related by diffeomorphism, is related by the induced
tensor transformation, so it still vanishes: ⟨0M |T ′

ab|0M⟩ = 0.
12The fact that temperature changes with the observer is phenomenon often called Tolman (or

Tolman–Ehrenfest) law: the local temperature Tobs measured by an observer travelling along the orbit
of a timelike Killing vector ka is such that

√
−k2Tobs = const. Here we labelled the constant T0. Note

the analogy with (1.8).
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2.3 Black holes

In the Wick-rotated Euclidean signature spacetime there is a geometric way of detecting
the periodicity of the Green’s function. The metric is

ds2E = α2ρ2 dη2E + dρ2 + dx⊥
2 . (2.29)

Focusing on the relevant R2 spanned by ρ and ηE, we see that this is locally isometric
to R2 in polar coordinates when one identifies ρ > 0 as the radial distance and ηE as
the angle, so the curvature vanishes. However, whether it’s actually R2 depends on the
identification of ηE. In R2, taken a circle of radius r it’s a fact that

circumference
radius

=
2πr

r
= 2π . (2.30)

Suppose we identify ηE ∼ ηE + β, then in the Euclideanization of Rindler space we
would have, for a circle of constant ρ∗

circumference
radius

=
βαρ∗
ρ∗

= βα . (2.31)

Therefore, the geometry has a locally flat behaviour, and so it is smooth, if and only if
we take β = 2π/α, which is the same result obtained from the analysis of the Wightman
functions! If this identification for the period of ηE is not made, the line element (2.29)
is said to have a conical singularity. This is because indeed a cone can be obtained
by cutting an angle from a flat plane and gluing together the two sides: the geometry
would be smooth everywhere but at the apex of the cone, and parallel transport of
vectors around the apex would result in a change of their orientation equal to the angle
removed from flat space.

With this observation, we have connected the regularity of the Wick-rotated geom-
etry with the periodicity of the (unique) Euclidean Wightman function and then, using
the KMS condition, with the temperature. The thermal system on the Lorentzian ge-
ometry is mapped to the field theory on a Euclidean background with a circle direction.
Isn’t this amazing?

We can apply the same Euclidean method to a much more general class of solutions.
The Unruh effect is essentially related to the bifurcate Killing horizon for the generator
of boosts ba in Minkowski flat space. However, one of the points of section 1 was that
bifurcate Killing horizons share many properties, among which the fact that observers
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along orbits of the generators are accelerated in an analogous way, with acceleration
related to the surface gravity: do they all measure a temperature? Here we focus on a
special case.

2.4 Near the horizon of a black hole

Let’s look at a static spherically symmetric spacetime with line element

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

2 , (2.32)

where dΩ2
2 is the line element of the round metric on S2. The Schwarzschild solution

(1.16) falls in this class, as do many others. There is an obvious Killing vector k = ∂t,
with norm k2 = −f(r). We assume further that there is a largest r+ such that f(r+) =
0, and that f(r) > 0 for r > r+, which is the region we focus on. So, ka is timelike
on our spacetime, and its norm vanishes on the surface N = {r = r+}. To further
investigate N , we need to introduce coordinates such that the metric is well-defined on
N , which are a generalization of the ingoing Eddington–Finkelstein coordinates.

Let r∗(r) be the function such that

r′∗(r) =
1

f(r)
, (2.33)

and define v = t+ r∗(r). In these coordinates, the line element has the form

ds2 = −f(r) dv2 + 2dvdr + r2 dΩ2
2 , (2.34)

which is still Lorentzian and non-degenerate at r = r+. Moreover k = ∂v. We can now
compute

ka|N = (dr)a , (2.35)

so it’s normal to N , which is then a Killing horizon for ka. Furthermore, we find that

∇ak
2 = −f ′(r+) ka , (2.36)

and comparing with (1.22), we identify the surface gravity of the horizon as

κ = f ′(r+)/2 (2.37)

(with a normalization of the Killing vector still to be determined). Not only is this a
Killing horizon: provided appropriate boundary conditions on f(r) are imposed, this
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would also be the event horizon of a black hole. In the following, we assume that
f ′(r+) > 0, so that N is a bifurcate horizon.

As with Rindler space, we perform a Wick rotation t = itE and study the geometry
of the resulting Euclidean space

ds2E = f(r) dt2E +
dr2

f(r)
+ r2 dΩ2

2 . (2.38)

For all r > r+, the space above is smooth, but that’s not necessarily true at {r =

r+}. Let’s look at a neighbourhood of this set, where the line element can be well-
approximated by

ds2 ∼ f ′(r+)(r − r+) dt
2
E +

dr2

f ′(r+)(r − r+)
+ r2+ dΩ2

2 . (2.39)

We then introduce a new radial coordinate with origin at the horizon

ρ2 =
4

f ′(r+)
(r − r+) . (2.40)

Using this coordinate, the line element in a neighbourhood of the horizon looks like

ds2 =
f ′(r+)

2

4
ρ2 dt2E + dρ2 + r2+ dΩ2

2 . (2.41)

But this is just the Euclidean Rindler metric (2.29)! So, we already know how to deal
with the smoothness requirement: we should view ρ as a radial coordinate ρ > 0 and,
to avoid conical singularities, we should identify

tE ∼ tE + β , β =
4π

f ′(r+)
=

2π

κ
, (2.42)

which guarantees that the circles of constant ρ shrink smoothly as ρ → 0. The resulting
geometry is a product of a disc R2 and a 2-sphere, with a smooth metric. The disc is
represented in figure 4.

In the meantime, we can appeal again to the chain of reasoning introduced earlier:
regularity of the Wick-rotated geometry near the Killing horizon requires a periodicity
for the adapted coordinate along the Killing vector, we identify this periodicity with
the periodicity of the Euclidean Wightman function using the KMS condition, and then
conclude that: an observer following an orbit of k = ∂t in the (Lorentzian) spacetime
(2.32)) is accelerated with acceleration

|A| = κ√
−k2

∼

√
f ′(r+)

4(r − r+)
=

1

ρ
,
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r = r+

r → ∞

tE

Figure 4: The topology of a static spherically symmetric black hole is R2 × S2. The
metric on the R2 factor parametrized by (tE, r), and the ranges of the coordinates are
such that the space caps off smoothly at r = r+ with flat metric in a neighbourhood.
The asymptotic behaviour as r → ∞ depends on the cosmological constant: here we
represent an asymptotically flat solution, where the R2 factor, as r → ∞, becomes a
cylinder with metric dt2E + dr2, since the size of the circles at constant r doesn’t grow.
This is the “cigar” geometry.

and she will detect a surrounding thermal bath of particles with temperature (2.28)

T =
|A|
2π

=
κ

2π
√
−k2

, (2.43)

where
√
−k2 in the denominator is the redshift factor due to the change to the observer’s

frame (see (1.8) and footnote 12). Suppose that ka is now such that k2 → −1: then we
find an interpretation for the constant in Tolman’s law: it’s the temperature measured
by an observer far from the horizon, and in particular it’s

TH =
κ

2π
. (2.44)

This is referred to as the Hawking temperature. Notice the difference with the previous
section: if the bifurcate Killing horizon is actually the event horizon of a spacetime, the
Hawking temperature is non-vanishing, whereas in Rindler space there was no preferred
observer along ba, and the “Hawking temperature” vanished (as commented right after
(2.28)).

For future use, also note that the application of the Green’s function (or regularity)
method does not pick up the temperature measured by the observer (2.28), but rather
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I +

I −

H+

H−

(a) Extended Schwarzschild

I +

I −

H+

(b) Stellar collapse

Figure 5: Penrose diagrams of (a) the extended Schwarzschild black hole, and (b) a
spherically symmetric stellar collapse (in grey the star).

the constant T0 (2.25) in Tolman’s law (see footnote 12), which we identified as the
Hawking’s temperature.

We also recall that the Lorentzian Killing horizon N is a codimension-1 set, and
the Bekenstein–Hawking entropy (1.30) is given by the area of the bifurcation surface.
After the Wick rotation and the construction of the regular Euclidean manifold, the
bifurcation surface, where the Killing vector vanishes, has become the 2-sphere over
the origin of the disc, that is, the locus {r = r+} × S2. In fact, that’s what remains of
the entire Killing horizon.

2.4.1 Far from the horizon of a black hole

At this point one may ask whether we have already reached our goal of proving the
Hawking effect : a black hole with surface gravity κ radiates particles with a thermal
spectrum at temperature (2.44). We have not.

First, we have not because in order to have a bifurcate horizon with the right
analiticity properties in, say, the Schwarzschild black hole, we would need the entire
conformal diagram 5a, but in realistic black holes originated from stellar collapse part
of the diagram is hidden due to the presence of matter 5b. Therefore, we need to study
a different situation. Second, in applying the analysis of the Unruh effect to curved
spacetime with a Killing horizon we have made an assumption about the existence of
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a vacuum state. In fact, a more careful analysis (see [Wal95, sec. 5.3]) shows that in
order to generalize the Unruh effect to curved spacetime one requires the existence of a
vacuum state invariant under the isometry generating the horizon and non-singular, in
the sense that the expectation value of the stress-energy tensor in the vacuum should
be non-singular. Such a state does not exist if the Killing vector generating the horizon
is not globally timelike: whilst this is not a problem for Schwarzschild, it is for the Kerr
black hole. Therefore, there is no Unruh effect for the Kerr black hole. However, an
observer far from the Kerr black hole would still see particle production.

We will not review the original computation by Hawking [Haw75], which is highly
non-trivial and which the interested reader can find reviewed in detail in [Rea20].
One crucial aspect of the computation involving spherically symmetric gravitational
collapse represented in figure 5b is that, even though the metric outside the matter is
the static Schwarzschild metric (because of Birkhoff’s theorem), the geometry is not
overall stationary, because the metric inside the matter is not. Therefore, observers on
I + and I − would not agree on the definition of the “vacuum.” In particular, consider
the propagation of radiation from I − in the collapsing matter and then scattering to
I + leads to the conclusion that in the state that the observer on I − calls “vacuum,”
the observer on I + will measure a spectrum of particles that at late retarded times
only depends on the surface gravity of the black hole.

Differently from the Unruh effect, the final result for the number of particles mea-
sured by the late-time observer in the early-time vacuum will not be a purely Planckian
spectrum at the Hawking temperature (2.44), but instead will also include a “grey-
body” factor, which takes into account the fact that the black hole emits and absorbs
radiation. However, the ratio of absorption and emission rates is independent of the
greybody factor, signalling that the black hole with surface gravity κ is in equilibrium
with a heat bath at temperature TH = κ/2π, as in (2.44).

The computation can be generalized to non-scalar field theories, and to different
gravitational backgrounds. For instance, we could have also studied a collapsing back
with angular momentum and charge. After a dynamical state, the black hole would
settle down to a stationary Kerr–Newman solution, which is described only by its mass,
angular momentum and charge. At late times, the black hole is in equilibrium with a
heat bath with temperature given again by TH in (2.44) (clearly with the appropriate

– 32 –



surface gravity), and the emitted particles preferably have angular momentum and
charge with the same sign as the black hole itself (this is the same that one would
expect for a rotating charged black body) [Haw75].

2.5 Where to now?

We argued that in presence of a gravitational collapse leading to a stationary black hole,
at late time an observer would measure an outgoing flux of particles distributed along
the spectrum according to Planck’s law with a greybody factor and a temperature TH

(2.44). In order to get to this result, we needed to consider the behaviour of quantum
fields near the black hole, but in the semiclassical approximation, that is, neglecting
the quantization of the gravitational field itself, and the backreaction of the fields on
the geometry. Before moving on with the topics, we stop to make some comments.

It is useful to have an intuitive picture of the origin of the black hole radiation.
The Hawking effect has an analogue in (flat space) electrodynamics, which had been
known for some time, the Schwinger effect [Sch51]. Recall that the quantum field
theory vacuum is not really empty, and pairs of particle-anti particle are continuously
created. For instance, let’s focus on electron-positron pairs and apply a strong electric
field to a region of (supposedly) empty space: as the pair of particles is created, the
field pulls the electron in one direction and the positron in the opposite direction. If
the field is sufficiently strong, we will be able to observe the creation of real electrons
and positrons at the opposite ends of the region, and there will be a current flowing.

The picture with gravity is slightly different, as all particles now have the same
“charge.” In this case, the crucial role is played by the black hole region of spacetime
created by the strong gravitational field: one member of the electron-positron pair could
fall inside the horizon, and the other could flow off to infinity, having now become a
real particle measured by the far observer.

As already anticipated at the beginning of section 2.1, we have showed that that
black holes are indeed thermodynamical objects. Classical thermodynamics can be
derived, using statistical physics, from quantum microstates. For a black hole, in
order to reproduce the Bekenstein–Hawking entropy, we would need to describe N ∼
exp(A/4) microstates. This requires a quantum theory of gravity. One of the most
impressive successes of string theory as a theory of quantum gravity has been the
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counting of the degeneracy of states corresponding to a microscopic description of a
supersymmetric black hole, reproducing the Bekenstein–Hawking entropy, and even
providing the leading correction to the result [SV96].

The idea that black holes must be assigned an entropy was based on the Second
Law of Thermodynamics, and the suggestion was that in presence of a black hole, this
would be modified to a Generalized Second Law : in any physical process

∆(Smatter + Sbh) ≥ 0 . (2.45)

Here, recall that Sbh = A/4 is entropy of the black hole, which is just a function of
(M,J,Q), so it’s oblivious to the entropy of the matter/radiation falling in the black
hole and it is not at all obvious that it would increase sufficiently to compensate the
decrease in Smatter. In particular, requiring that the Generalized Second Law must
hold would also imply a bound on Smatter as a function of its extensive parameters.
Such a bound is intrinsically related to gravity, as it has at its core the tenet that one
cannot fill a region of space with an arbitrarily high number of degrees of states without
encountering a gravitational instability and forming a black hole. In particular, this
leads to the idea of a holographic principle: the physics in a region with boundary area
A is fully described by no more than A/4 degrees of freedom. This suggestion is in
stark contrast with the predictions of local field theory, and it should be a property of
a theory of quantum gravity. The most concrete instance of the holographic principle
is the realization of the AdS/CFT correspondence in string theory (see [Bou02] for a
review).

In the derivation above, we ignored the backreaction of the radiation on the geome-
try. A proper study of the backreaction requires a quantum theory of gravity, but from
the presence of radiation itself, one can immediately draw some puzzling conclusions
about unitary evolution. Consider matter starting its collapse in a pure (definite) quan-
tum state. It will form a black hole, which will then radiate and eventually evaporate
completely, leaving only its thermal radiation in the universe. The latter state can now
only be described using a density matrix, it’s a mixed state. Thus, we seem to have
described the evolution from a pure to a mixed quantum state, which would not be
consistent with unitary evolution in quantum mechanics. This is roughly the content
of the information paradox : does the black hole evolve unitarily in time?
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It is fair (and fun) to say that the subject of the evolution of a thermal black hole
is still a heated subject, and we will not cover it. For some reviews see, for instance,
[Mat09, AHM+20]. We limit ourselves to notice that the previous comments on string
theory realizations imply that black holes do indeed evolve unitarily.

Finally, to conclude this section, let’s view some numbers. For a static black hole
with mass M

TH =
κ

2π

ℏ
kBc

=
1

8πM

ℏc3

GkB
∼ 6.17 · 10−8 · M⊙

M
K ,

Sbh =
A

4

kBc
3

Gℏ
= 4πM2GkB

cℏ
∼ 1.05 · 1077 · M

2

M2
⊙
kB .

(2.46)

Therefore, modelling with crude approximation an astrophysical black hole (M ∼
106M⊙) with a Schwarzschild solution, we find that its Hawking temperature is mi-
nuscule, much lower than the temperature of the CMB radiation, whereas its entropy
is enormous, much higher than the entropy of matter in the same volume.
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3 The gravitational path integral

In this section we look at a naïve but insightful approach to the study of quantum
aspects of gravity: the gravitational path integral.

3.1 Definition

Let’s begin by recalling the definition of the path integral in quantum mechanics. This
is applied to the computation of the amplitude that a particle at position x1 at time
t1 is found at position x2 at a later time t2. Feynman’s idea is to compute this by
the evaluation of the integral over all trajectories between x1 and x2, weighted by an
oscillatory contribution due to the classical action:13

⟨x2|e−itHℏ |x1⟩ =
∫ x=x2

x=x1

Dx ei
S
ℏ , (3.1)

where S =
∫ t

0

(
m
2
ẋ2 − V (x)

)
ds. A far-reaching observation is that the time propagator

e−itHℏ is naively related to the density matrix operator e−βH by t = −iβℏ (where
β = 1/kBT ). As we saw and justified in some detail in the previous section, the
relation is deeper and more involved, but one can in fact construct the path integral
representation of the density matrix operator (see footnote 9), and view it as a “path
integral representing evolution in imaginary time.” In fact, the construction of the
“path integral representation” of e−βH can be done in a much more rigorous way than
that of e−itH/ℏ, even to the level of satisfaction of a mathematician (and indeed it
is named Feynman–Kac formula after the mathematician Mark Kac). The result is
formally represented by the expression

⟨x2|e−βH |x1⟩ =
∫ x=x2

x=x1

Dx e−
SE
ℏ , (3.2)

where now SE is the Euclidean action

SE =

∫ tE

0

(m
2
ẋ2 + V (x)

)
dsE , (3.3)

and tE = βℏ. Notice that in this variables, the relation between the time propagator
and the density matrix has become the canonical Wick rotation t = −itE, and indeed

13In this section we reintroduce kB and ℏ.
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this can be used to relate S and SE

iS = i

∫ t

0

(
m

2

(
dx

ds

)2

− V (x)

)
ds = i

∫ −itE

0

(
m

2

(
dx

ds

)2

− V (x)

)
ds

= i

∫ tE

0

(
−m

2

(
dx

dsE

)2

− V (x)

)
(−i dsE)

= −SE

(3.4)

where in the second line we introduced s = −isE. In higher dimensions, this procedure
justifies the adjective “Euclidean”, but for now notice that SE has the same form as the
energy T + V . Finally, we can construct the canonical partition function Z(β), which
is obtained from (3.2) by identifying x1 and x2 and summing over them, thus obtaining
a trace

Z(β) =

∫
Dx e−

SE
ℏ , (3.5)

where the sum is over all path that close after “imaginary time” β. We now see that the
path integral picture of the trace naturally enforces the fact that the thermal partition
function should be computed over Euclidean backgrounds where “time” is identified in
a circle of radius β, which we discussed from the periodicity of the Green’s function in
section 2.2.1. We have come full circle (pun intended)!

Guided by this, and the success of the path integral in quantum field theory, we
want to extend it to gravity. We want to compute the probability amplitude of evolving
from a state described by a metric g1 on a spacelike surface Σ1 with matter fields Φ1 to
a state described by metric g2 on a spacelike surface Σ2 with matter fields Φ2, which
can be formally written as

⟨g2,Φ2,Σ2|g1,Φ1,Σ1⟩ =
∫

DgDΦei
S
ℏ . (3.6)

Here we introduced the (undefined) path integral measures Dg and DΦ, and the integral
is taken over all the field configurations satisfying the appropriate boundary conditions.
More precisely, to avoid further divergences we have to assume that either Σ1,2 are
compact or that they are joined by a timelike tube, to make the overall region of
spacetime we are concerned with compact. Thus we are working with a compact region
of spacetime M with boundary ∂M = Σ1 ∪ Σ2 ∪ C, as in figure 6.
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M

Σ2

Σ1

C

Figure 6: A schematic representation of the application of the gravitational path
integral. To compute the amplitude (3.6) one should integrate over all configurations
filling ∂M with the appropriate boundary condtions on ∂M .

3.2 Gravity action

The action of the metric in general relativity is the Einstein–Hilbert action

SEH =
1

16π

∫
(R− 2Λ)

√
−g d4x , (3.7)

to which we should add the Lagrangian describing the matter fields Sm coupled to the
metric. If we tried to use S = SEH + Sm, we would immediately find an issue: the
Einstein–Hilbert action does not generically yield a well-posed variational problem on
a space with a boundary! That is, varying the Einstein–Hilbert action does not only
give the equations of motion, but also a boundary term. If the space is asymptotically
flat and the metric and its derivatives decay sufficiently fast at infinity, this boundary
term can be ignored, as it is usually done. In general, we cannot do that.

More precisely, varying SEH leads to

δSEH =
1

16π

∫
M

[(
Rab −

1

2
Rgab + Λgab

)
δgab +∇aX

a

]√
|g| d4x (3.8)

=
1

16π

∫
M

(
Rab −

1

2
Rgab + Λgab

)
δgab

√
|g| d4x+

1

16π

∫
∂M

naX
a
√

|h| d3x ,

where we have used the divergence theorem in the second step, denoting by hab the
induced metric on ∂M . The bulk term in (3.8) consists of the Einstein equations with
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a cosmological constant, whereas he boundary term is given by

Xa = gbcδΓa
bc − gabδΓc

bc ,

δΓa
bc =

1

2
gad (δgdb;c + δgcd;b − δgbc;d) ,

(3.9)

and at the end of the day its presence is due to the fact that the Riemann tensor is
second order in the derivatives of the metric. In order to define a well-posed variational
problem, we need the boundary term to vanish on its own (which requires both the
metric and its derivatives to vanish on the boundary) or to add a further boundary
term that cancels the variation of the Einstein–Hilbert action. Such a term would have
to be a special combination of the first derivatives of the induced metric. Luckily, such
a term does exist: it’s the extrinsic curvature of an embedded surface.

3.2.1 Gibbons–Hawking–York term

Consider a timelike or spacelike surface Σ with unit normal na (that is nan
a = ±1

depending on whether it’s timelike or spacelike), and induced metric hab = gab ∓ nanb.
The latter is sometimes denoted first fundamental form and has the property that ha

b

is a projector on the tangent space to Σ (indeed ha
bn

b = 0). The normal is defined on
Σ, but we can extend it to the ambient space M as we want (the final result do not
depend on the extension). We can then use the Lie derivative to measure how does the
induced metric on Σ varies as we move along an integral curve of n♯: the result is the
extrinsic curvature

Kab =
1

2
Ln♯hab , (3.10)

which is a rank-2 symmetric tensor, sometimes denoted second fundamental form. We
can also write it in a (non-trivially) equivalent way as

Kab = hc
ah

d
b∇cnd . (3.11)

By its definition it is clear that Kab depends also on the way the surface sits in the
ambient space. In contrast, the intrinsic curvature of Σ is measured by the Riemann
tensor R[h]abcd associated to hab (and to its Levi-Civita connection): it is related to
the extrinsic curvature and the curvature of the ambient space R[g]abcd by the Gauss
equation

R[h]abcd = ha
eh

f
bh

g
ch

h
dR[g]efgh ± 2K

a
[c Kd]b . (3.12)
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Finally, we also define the trace of the extrinsic curvature by K ≡ habKab.

To get a feeling for the meaning of the extrinsic curvature, consider a surface Σ in
M defined by the level set f = 0 with f : M → R and df ̸= 0 on Σ. The unit normal
is na = N (df)a where N is a function no M such that na is a unit normal, and

∇cnb = N ∂2
bcf + ∂cN (df)b . (3.13)

Using (3.11), the extrinsic curvature is

Kab = hc
a
hd

bN∂2
cdf . (3.14)

Therefore, if M = Rd, it is the projection to the tangent space to the surface of the
second derivative of f . Since f(p) = 0 for p ∈ Σ, and the projection of the first
derivative is vanishing (as the latter is proportional to the normal), Kab is the leading
approximation to f in a neighbourhood of p, once projected to the tangent plane, or
the best approximation of the hypersurface by a paraboloid. It measures how much
the hypersurface moves “away” from the tangent plane at a point in the direction of the
normal to the point, and thus corresponds to our intuitive definition of “curvature.”14

As an example of computation of extrinsic curvature that will be particularly useful
in a little while, consider a timelike hypersurface of constant r in the static spherically
symmetric spacetime (2.32). The unit normal to such surface if n = f(r)−1/2dr, the
dual vector field is n♯ = f(r)1/2∂r and the induced metric is h = −f(r) dt2 + r2 dΩ2

2.
We can then use the definition of the Lie derivative to compute Kab using (3.10), which
in a coordinate basis is

Kµν =
1

2
(nρ∂ρhµν + hµρ∂νn

ρ + hρν∂µn
ρ) =

1

2

√
f(r)∂rhµν

=
√
f(r)

(
−f ′(r)

2
dt2 + r g(S2)

)
µν

,
(3.15)

with trace
K = hµνKµν =

f ′(r)

2
√

f(r)
+
√
f(r)

2

r
. (3.16)

As stated earlier, adding a multiple of the extrinsic curvature of the boundary to
SEH allows us to construct a well-defined variational problem. More precisely, we add

14For instance, you can convince yourself that a cylinder has vanishing intrinsic curvature (you can
create it by rolling up a flat piece of paper) but it has non-vanishing extrinsic curvature.
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the Gibbons–Hawking–York term

SGHY =
1

8πG

∫
∂M

K
√

|h| d3x , (3.17)

Together with this term, as you will prove in the problem sheet, the variation (3.8)
changes to

δ(SEH + SGHY) =
1

16π

∫
M

(
Rab −

1

2
Rgab + Λgab

)
δgab

√
|g| d4x

+
1

16π

∫
∂M

Πabδh
ab
√

|h| d3x ,

(3.18)

where
Πab = Kab −Khab . (3.19)

Therefore, the boundary term vanishes if we impose Dirichlet boundary conditions on
the metric, that is, δhab = 0, or if we impose the Neumann boundary condition by fixing
the derivative Πab = 0, and we are only left with the equations of motion, that is, with
a well-posed variational problem. The combination (3.19) is referred to as Brown–York
stress-energy tensor, for reasons that we’ll see later on in section 4.3.

3.2.2 Euclidean space

We have established that the action S appearing in (3.6) as the weight of each contribu-
tion to the gravitational path integral contains S = SEH + SGHY + Sm (and potentially
also fixed terms that could be extracted from the definition of the measure, as we shall
soon see). An immediate problem, though, is that for Lorentzian metrics and unitary
matter fields, S is real, so the integrand oscillates and the path integral will not gener-
ically converge. Relatedly, the boundary problem to be solved in order to find the
configurations contributing to the path integral involves a hyperbolic equation, which,
as you know from trying to find propagators in Lorentzian QFT, is not a well-posed
problem, as the existence of the solution is not guaranteed and even so it is not unique
(e.g. the non-uniqueness of the propagator for a real scalar field).

One solution to improve this state of affairs in stationary spacetime, as already
discussed in the previous section, is to perform a Wick rotation, in which case we can
define a unique vacuum by imposing the asymptotic boundary conditions for the fields.
Moreover, the propagator found in this way agrees upon analytic continuation with the
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Feynman’s propagator. As already mentioned, this procedure for quantum mechanics
leads to the Feynman–Kac formula, which mathematicians too are happy with.

It is reasonable to suggest that the same procedure be applied to the gravitational
path integral (3.6). Letting t be the length in time of the timelike tube connecting
the surfaces Σ1 and Σ2, if we define t = −itE, then the induced metric on the tube
is now positive-definite and the gravitational path integral involves now the boundary
problem of an elliptic differential equation. Namely, the integration is over all the
positive-definite metrics gE on the compact region M that induce the positive-definite
metric hE on ∂M . The weight of each configuration is now e−SE where

SE = −iS|Wick rotated

= − 1

16π

∫
M

(R− 2Λ)
√
gE d4x− 1

8π

∫
∂M

K
√

hE d3x− Sm,E ,
(3.20)

and now the Ricci scalar R and the extrinsic curvature K are computed using gE and
hE, respectively. These prescriptions are the essence of Euclidean quantum gravity.
This approach to quantum gravity has been very successful, even (and surprisingly)
beyond the explanation of the thermodynamic properties of black holes, though there
are still some issues to be clarified, which we will review in section 4.3.

For the time being, we ignore all issues of convergence or subtleties in the definition,
we put on blinders and compute. What should we begin with? As we already discussed
at length, Euclidean field theory shines when it is applied to thermal Lorentzian sys-
tems: the description of a Lorentzian system on a background Rt×Σ at a temperature
T is mapped to a Euclidean problem on S1×Σ, where the angular coordinate on S1 has
period β = 1/kBT . The characteristic state function of the system is the free energy
F , directly related to the partition function of the system via

βF (β) = − logZ(β) . (3.21)

As reviewed in section 3.1, in the path integral approach the canonical partition function
is given by the integral

Z(β) =

∫
DgEDΦE e−

SE
ℏ , (3.22)

where the integration is over all metrics and field configurations with the appropriate
boundary condition on ∂M ∼= S1 × ∂Σ. Note that this is a tantalizing reminder of the
holographic nature of gravity, and will become better defined in AdS.
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How do we approach the Euclidean gravitational path integral? The short answer
is that we do not, because we do not know how to make sense of the measure over
the space of metrics. Instead, we look at the semiclassical approximation: in the limit
when ℏ is much smaller than the action of the typical path,15 the generalized contour
integral would be (hopefully) dominated by the configurations (gE,ΦE) corresponding
to stationary points of the action SE, which are the solutions to the classical equations
of motion. In this limit, we obtain

SE(gE,ΦE) = SE(gE,ΦE) + S
(2)
E (gE,ΦE) + · · · (3.23)

where SE(gE,ΦE) is the on-shell action evaluated on the solutions of the classical equa-
tions of motion and it is commonly denoted I, S(2)

E (gE,ΦE) is a functional quadratic
in the perturbation around the classical solution, and we ignored higher order terms in
the expansion of the action. So, the free energy in (3.21) is given by

βF =
1

ℏ
I − log

∫
DgEDΦE e−

S
(2)
E
ℏ + · · · . (3.24)

The second term in the expansion is referred to as the one-loop contribution, and it
represents the effects of quantum fluctuations around the classical saddle point: for
instance, in absence of other fields it represents the contributions of thermal gravitons
on the background. If we ignore this term, we find a very interesting relation [GH77]:

I = ℏβF . (3.25)

This equation goes under the name of quantum statistical relation (the “quantum” bit
refers to Planck constant), and is used in conjunction with the canonical statistical
relation, which relates the free energy of the thermal system with the entropy and
energy

F = E − TS . (3.26)

The quantum statistical relation is a far-reaching statement that relates thermodynam-
ics and quantum gravity. It is valid, as is the entire semiclassical approximation, if we

15But we keep tE = βℏ fixed (see (3.3)). There are two other limit one can take by instead considering
βℏ → 0: the classical limit (ℏ → 0, β fixed) and the high temperature limit (β → 0, ℏ fixed). In both
these cases, the weight in the path integral reduces to the contribution of the potential evaluated on
the paths.
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can ignore the higher order terms in the expansion of the action, which requires the
“gravitational coupling” is small, or, in terms of the Planck energy introduced at the
beginning of the notes, that the energies involved are much smaller that the Planck
energy. Equivalently, that the length scales of the problem are much larger than the
Planck length

E ≪ EP ⇔ ℓ ≫ ℓP =

√
Gℏ
c3

. (3.27)

Even though it may seem that the path integral reformulation has not provided us
with much insight into the quantum structure of gravity, we should not dismiss the
importance of the conceptual framework that it provides us, as it will give us a lot of
mileage.

3.3 Hawking–Page transition

We focus on the quantum description of a static thermal system with temperature
T = 1/β in pure gravity. Upon Wick rotation, “time” becomes a compact direction S1

with length β, and in order to follow the path integral prescriptions we should choose
a boundary ∂M , which we fix to have topology S1 × S2. Therefore, the problem has
been mapped to the question of finding metrics filling S1

β ×S2. In the semiclassical ap-
proximation, these metrics should also be solutions of the classical equations of motion
coming from the action

SE = − 1

16π

∫
M

(R− 2Λ)
√
gE d4x− 1

8π

∫
∂M

K
√

hE d3x , (3.28)

namely they are Einstein manifolds satisfying

Rab = Λgab . (3.29)

We are then interested in computing the on-shell action on these solutions.
If we focus on asymptotically flat spacetime (Λ = 0), then the Schwarzschild so-

lution will be the dominant contribution (in absence of angular momentum), but, as
we mentioned in section 2.5, we find an issue with its interpretation as an equilibrium
solution, because the black hole evaporates. One can also compute the specific heat of
the solution, and confirm that the canonical ensemble is unstable, as the Schwarzschild
black hole cannot be in thermal equilibrium with a reservoir. The temperature is given
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by the inverse of β in (2.42), from which

T =
1

8πM
⇒ C =

∂E

∂T
= − 1

8πT 2
, (3.30)

which is negative.
A much better setup is found by looking at asymptotically AdS solutions (Λ < 0).

As we will see momentarily, black holes in AdS are “eternal,” the specific heat can
be positive, so they can reach equilibrium with their own thermal Hawking radiation.
Intuitively, this is due to the negative gravitational constant, which acts like a “confining
box” that prevents bulk objects from reaching “infinity.” We therefore focus on the
study of gravity in presence of a negative cosmological constant, which we normalize
to Λ = −3/ℓ2, so that

SE = − 1

16π

∫
M

(
R +

6

ℓ2

)
√
gE d4x− 1

8π

∫
∂M

K
√

hE d3x ,

Rab = − 3

ℓ2
gab .

(3.31)

3.3.1 Thermal AdS

The first “obvious” solution to (3.31) is (Euclidean) anti-de Sitter spacetime, also called
hyperbolic space, which is the “basic” space of negative costant curvature, that is, its
Riemann tensor satisfies

Rabcd = − 1

ℓ2
(gacgbd − gadgbc) , (3.32)

where the constant ℓ is referred to as radius, by analogy with the sphere (which satisfies
the same condition with a positive sign). Any other constant curvature space with
negative curvature is locally isometric to EAdS 4. The topology of EAdS 4 is the trivial
one, same as R4, and one can construct a coordinate system such that the metric is

ds2 =

(
1 +

r2

ℓ2

)
dt2E +

dr2

1 + r2

ℓ2

+ r2 dΩ2
2 , (3.33)

with tE ∈ R and r ≥ 0. In these coordinates, the metric on AdS4 has the same form
as (2.38), with the difference that here

f(r) = 1 +
r2

ℓ2
(3.34)
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never vanishes, so ∂tE is never zero, and therefore there is no regularity requirement that
would impose a specific periodicity for tE. Therefore, in order to match our boundary
conditions, we can identify tE ∼ tE + β with any β. The resulting space is referred to
as thermal AdS.

Following the prescriptions of the gravitational path integral, we consider a region
M of spacetime defined by {0 ≤ r ≤ r0} and bounded by the hypersurface ∂M = {r =
r0} with induced metric

hE = f(r0) dt
2
E + r20 dΩ

2
2 . (3.35)

Because of the periodic identification of tE, this surface has the required topology
S1 × S2: the length of the circle is

√
f(r0)β and the radius of the 2-sphere is r0. As

r0/ℓ → ∞ and we look at “infinity,” both the circle and the sphere grow without bound:

hE ∼ r20
ℓ2
[
dt2E + ℓ2dΩ2

2

]
, (3.36)

which is conformally related to a metric with finite volume S1
β×S2

ℓ . This is a feature of
spaces that asymptotically have the same behaviour as anti-de Sitter (unsurprisingly
called asymptotically AdS spaces): we really look at their conformal boundary. We
will return to this in section []. Note that when the cosmological constant vanishes,
instead, the radius of the circle decouples from the radius of the sphere, and we have a
typical asymptotically flat behaviour.

We are interested in the on-shell value of the Einstein–Hilbert action with Gibbons–
Hawking–York term (3.31) The bulk term on-shell reduces to a multiple of the volume
of M

Ibulk =
1

16π

∫
M

6

ℓ2
√
gE d4x =

β

2ℓ2
r30 . (3.37)

To compute the Gibbons–Hawking–York term we can borrow the result from (3.16)

IGHY = − 1

8π

∫
∂M

K
√

hE d3x = −β

2

(
r20
2
f ′(r0) + 2r0f

′(r0)

)
= − β

2ℓ2
(
3r30 + 2r0ℓ

2
)
,

(3.38)

and the naive result for the on-shell action is

I =
β

2Gℓ2
(
−2r30 − 2r0ℓ

2
)
. (3.39)
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This expression is divergent if r0 → ∞, corresponding to the fact that we are integrating
on a non-compact space.

A surprising feature of asymptotically anti-de Sitter spaces is that the divergences
that arise when computing Ibulk + IGHY can always be cancelled by counterterms com-
puted using only the intrinsic geometry of ∂M . That is, they are integrals of the
induced metric hE, the curvature and its derivative. The resulting expressions are
universal, in the sense that they apply to any asymptotically AdS solution in a given
dimension.

The computation of the counterterms is a technique called holographic renormal-
ization, which is always quite technical and sometimes quite subtle (see [dHSS00] for
a some clear explanations). The result relevant for us is that the on-shell action of
any asymptotically (locally) EAdS 4 solution is finite if we add to Ibulk + IGHY the
counterterm action

Ict =
1

8π

∫
∂Mϵ

(
2

ℓ
+

ℓ

2
R

) √
hE d3x , (3.40)

and then take the limit r0 → ∞.

In order to apply this to our spacetime, we need to know the Ricci scalar of the
induced metric hE, but that’s a product metric on round S1 × S2, so the Ricci scalar
is just the sum of the two and one of them vanishes (being a one-dimensional metric)

R =
2

r20
, (3.41)

and

Ict =
β

2

(
2

ℓ
+

ℓ

r20

)
r20
√

f(r0)

=
β

2ℓ2
[
2r30 + 2r0ℓ

2 + o(1)
]
.

(3.42)

It’s clear that we cancel the divergent terms in (3.39), and in fact we just find that the
on-shell action of four-dimensional thermal AdS vanishes:

ITh.AdS = 0 . (3.43)

Quite remarkably, this is only a property of the particular choice of ∂M ! The action of
EAdS in a different “slicing” may be non-zero. For instance, the action of EAdS 4 with
S3 boundary is

IEAdS,S3 =
πℓ2

2
. (3.44)
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3.3.2 Static black hole

There are other static solutions filling the same (conformal) boundary S1
β × S2. A

particularly important one is the Euclidean AdS-Schwarzschild solution, which has line
element

ds2 = f(r) dt2E +
dr2

f(r)
+ r2 dΩ2

2 , f(r) = 1− 2M

r
+

r2

ℓ2
, (3.45)

which is again a static spherically symmetric metric of the form (2.38). As before, we
consider a region M of the space that has a cutoff at r = r0 with induced metric that
has again the same form as (3.35). Importantly, though f(r0) is different, it has the
same asymptotic behaviour as (3.36) when r0/ℓ ≫ 1: the space is asymptotically AdS,
and near “infinity” it has a conformal boundary S1

β × S2
ℓ .

In order to have a good contribution to the semi-classical approximation of the
Euclidean gravity path integral, we should also make sure that it’s a smooth spacetime.
It is not obvious that the Euclidean metric is regular everywhere, because f(r) now has
zeroes. Concretely, we denote by r+ the largest of the real roots of f(r), which satisfies

M =
r+
2ℓ2

(r2+ + ℓ2) , (3.46)

and then we should restrict r ≥ r+. In contrast to the case of thermal AdS, now our
regularity discussion really parallels that around (2.38): the space is smooth if and only
if we impose a periodic identification of tE as in (2.42):

tE ∼ tE + β , β =
4πr+ℓ

2

ℓ2 + 3r2+
. (3.47)

The resulting geometry is the product of a disc and a 2-sphere described below (2.42)
and represented in figure 4 (with the provision that the asymptotic behaviour is differ-
ent: the radius of the circle parametrized by tE grows rather than remaining constant,
so we don’t have a “cigar.”

From the Lorentzian viewpoint, the spacetime described by (3.45) after the analytic
continuation t = −itE is a static spherically symmetric black hole. There is a singularity
at r = 0, as can be checked computing the Kretschmann scalar

RabcdR
abcd =

48M2

r6
+

24

ℓ2
,
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and, as we showed in section 2.4, there is a Killing horizon {r = r+} for k = ∂t, with
temperature

T =
f ′(r+)

4π
=

1

4πr+
+

3r+
4πℓ2

. (3.48)

The entropy of the horizon is still given by the Bekenstein–Hawking formula for the
area of the S2 bifurcation surface (in Lorentzian), or, equivalently, the S2 over the
origin of the disc (in Euclidean)

SBH =
1

4
AS2

r+
= πr2+ , (3.49)

though we have only “rigorously” derived this formula the context of asymptotically
flat solutions.

The next step is the computation of the on-shell action. At the formal level, we
can use many of the expressions already derived for thermal AdS, though with different
f(r) and different range of r. The bulk on-shell contribution is not (3.37) because r

does not extend to 0

Ibulk =
β

2ℓ2
(
r30 − r3+

)
, (3.50)

and the Gibbons–Hawking–York term is formally equal to the first line in (3.38)

IGHY = −β

2

(
r20
2
f ′(r0) + 2r0f

′(r0)

)
= − β

2ℓ2
(
3r30 + 2r0ℓ

2 − 3Mℓ2
)
.

(3.51)

Overall, the divergent part is the same as that of thermal AdS, with the addition of a
finite term

I =
β

2ℓ2
(
−2r30 − 2r0ℓ

2 + 3Mℓ2 − r3+
)
. (3.52)

To remove the divergences we once again consider the counterterms found via holo-
graphic renormalization (3.40), which in the static spherically symmetric background
have the structure in the first line of (3.42)

Ict =
β

2

(
2

ℓ
+

ℓ

r20

)
r20
√

f(r0)

=
β

2ℓ2
[
2r30 + 2r0ℓ

2 − 2Mℓ2 + o(1)
]
.

(3.53)

Finally, taking the limit r0 → ∞, we find

IAdS-Schw =
β

2

(
M −

r3+
ℓ2

)
=

β

4ℓ2
r+
(
ℓ2 − r2+

)
. (3.54)
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Figure 7: Plots of temperature against the horizon radius for static spherical black
holes in asymptotically flat and asymptotically AdS spacetime.

This is where the physics gets more interesting! We aim to describe the canonical
ensemble defined by the gravitational path integral with boundary conditions fixing
the temperature, and we have found two competing leading contributions. We should
therefore express the parameter of the solution M in terms of T . In fact, we have already
traded M for r+ via (3.46), so we need to invert T = T (r+) in (3.48). The expression for
the temperature now has a competition between the two scales of the problem (r+, ℓ)

that is absent in Schwarzschild (which can be obtained taking ℓ → ∞, thus removing
the cosmological constant). The result is that there is a minimum temperature at

rmin =
ℓ√
3
, Tmin =

√
3

2πℓ
. (3.55)

Looking at the plot 7b, we see that for T > Tmin there are two black hole solutions.
Since one branch corresponds to a smaller radius of the other branch, the two solutions
are referred to as small and large black holes. When inverting T (r+) we find that they
correspond to the two roots

rL,S+ =
ℓ

3

(
2πℓT ±

√
4π2ℓ2T 2 − 3

)
, (3.56)

which are real indeed only if T > Tmin. This equation, together with the relation M(r+)

in (3.46), allows us to write I(β) for both branches of solutions

IL,S(β) =
ℓ
(
−πℓ(8π2ℓ2 − 9β2)∓ (4π2ℓ2 − 3β2)

3
2

)
27β2

, (3.57)
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where β ranges only in 0 < β ≤ 2πℓ/
√
3. We then find that

IS(β) > 0 ⇔ 0 < β ≤ 2πℓ√
3
, IL(β) > 0 ⇔ πℓ < β ≤ 2πℓ√

3
. (3.58)

The same conclusion can also be drawn less directly from the expression (3.54). It’s
clear that the on-shell action of the black hole is negative if r+ > ℓ ≡ rHP, corresponding
to the temperature

THP =
1

πℓ
. (3.59)

One then checks for consistency that THP > Tmin and that rHP > rmin, which means
that we are necessarily looking at the branch of large black holes.

We are now ready to discuss the thermodynamics of the system using the quantum
statistical relation (3.25). We first observe that for T < Tmin there is a unique solution
with the appropriate boundary condition, thermal AdS, so the only possible equilibrium
is without a black hole. As T is raised above Tmin there are two additional possible
solution that compete with thermal AdS as equilibria. When Tmin < T < THP, the free
energies of both small and large black holes are positive, so it is still most favorable
that the black hole evaporates leaving only thermal AdS. Finally, if T > THP the free
energy of the large black holes becomes lower than that of thermal AdS and the stable
thermodynamic equilibrium is the large black hole state. This is represented in the
diagram 8.

Since the free energy is continuous but its first derivative is not, this change is a first
order phase transition, the Hawking–Page transition [HP83]. A remarkable observation
from the viewpoint of the gravitational path integral is that the phase transition also
involves a transition between solutions with different topologies! If the length of the
boundary circle is larger than βHP = πℓ, the dominant contribution to the path integral
is the one “filling the sphere” with topology S1×R3, as β < βHP, instead, the dominant
contribution is that “filling the circle” with topology R2 × S2.

To confirm the previous observations we should also establish the stability of the
equilibrium configurations, which is done by considering the heat capacity

C =
∂ ⟨E⟩
∂T

, (3.60)

where
⟨E⟩ = − ∂

∂β
logZ(β). (3.61)
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Figure 8: On-shell action of the three competing solutions with asymptotic boundary
S1 × S2 as a function of the temperature. Large and small black holes only exist
if T > Tmin, and for T > THP the large black hole is thermodynamically favorable
compared to thermal AdS.

One could directly apply the derivatives on the expressions for logZ(β) = −I(β) in
(3.57), but this leads to cumbersome expressions. On the other hand, a quicker way is
to trade β for r+ using (3.48), and write the action (3.54) in terms of r+

IAdS-Schw = πr2+
ℓ2 − r2+
ℓ2 − 3r2p

. (3.62)

We then find that

⟨E⟩ = M , S =

(
−1 + β

∂

∂β

)
I = πr2+ . (3.63)

The first relation gives us the physical interpretation of the parameter M of the solu-
tion, and the second one confirms that the thermodynamical entropy agrees with the
Bekenstein–Hawking formula (3.49) even for asymptotically AdS solutions. This is a
non-trivial consistency check of the gravitational path integral approach. Finally, we
compute the heat capacity

C = 2πr2+
3r2+ + ℓ2

3r2+ − ℓ2
, (3.64)

which is positive provided r+ > ℓ/
√
3. This is exactly rmin in (3.55), so if the black

hole has r+ > rmin, that is, it’s a large black hole, then its heat capacity is positive and
the canonical ensemble is well-defined because it can be in equilibrium with a reservoir
held at finite temperature, unlike what happens with small black holes in AdS and
with the Schwarzschild solution.
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4 Selected topics on the gravitational path integral

In the previous section, we introduced the gravitational path integral as a framework
to quantize gravity, and we saw that even the crudest approximation, just keeping the
leading saddle in the semiclassical approximation in (3.23), led to a consistent picture
for both the temperature and entropy of black holes. Moreover, we saw interesting
physics emerging from the competition between saddles with different topology in anti-
de Sitter.

However, not everything is smooth sailing with the gravitational path integral
defined as we did: there are numerous issues that we still don’t understand in full, and
are the subject of current research. In this section, we review some of them.

4.1 Entropy from topology

4.2 Rotation, charge and complex metric

Until now we have only seen Wick-rotated Lorentzian spacetime with vanishing mixed
terms gtxi , and so after the analytic continuation t = −itE the resulting metric was
positive-definite (commonly referred to as “Euclidean” or, more properly, Riemannian).
We now introduce rotation and charge, and we’ll see some changes.

In Lorentzian signature, the presence of angular momentum is described in terms
of a spacelike Killing vector ma generating a U(1) action on the space. If we impose
that the metric near the boundary is S1

β ×f S2 (where the underscore f signals the
possibility of a cross term), then the U(1) generated by ma could be the azimuthal
rotations of the S2 factor. We can combine ma with the timelike Killing vector ka to
define ξa = ka+ωma. Then, ω can be interpreted as the angular velocity: we construct
adapted coordinates k = ∂t and m = ∂ϕ, then along an orbit of ξa, up to a choice of
integration constant, we have ϕ = ωt, so we identify ω as an angular velocity.

To discuss charge, instead, we should impose gauge-invariant boundary conditions
for the electromagnetic field. In four dimensions, assuming a boundary with topology
S1
β × S2, the gauge field is specified by imposing the flux of the curvature through S2

(corresponding to the magnetic charge, which we set to zero), and the holonomy of the
gauge potential around S1: exp

(
i
∫
S1 A

)
≡ exp (iβΦ), and we will identify Φ as the

electrostatic potential. Notice that Φ ∈ R if and only if AtE is real too, which means
that the gauge field in Lorentzian signature is complex. Conversely, one could start
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from a real Lorentzian gauge field with At ∈ R, but then the Wick-rotated gauge field
would be complex!

We now show that introducing rotation means that the periodic identification of
the fields in the KMS condition (2.14) are modified [GP78]. To do so, we consider the
grand canonical Gibbs’ formula with two operators generating U(1) symmetries: the
charge and angular momentum (which generalizes (2.9))

⟨O⟩β,Φ,ω ≡ Z−1Tr
(
Oe−β(H−ΦQ−ωJ)

)
, (4.1)

and consider the Wightman functions of a complex scalar field φ(t, ϕ,x) (where x are
the other spatial coordinates, say r, θ) on which

eiαQφ(t, ϕ,x)e−iαQ = eiαqφ(t, ϕ,x) ,

eiαJφ(t, ϕ,x)e−iαJ = φ(t, ϕ− α,x) .
(4.2)

Note that the second one is a spacetime U(1) symmetry, in contrast to the first one.
Then, using the Heisenberg evolution of the fields and the cyclicity of the trace, we can
show that

Gβ,Φ,Ω
+ (t, ϕ,x,y) ≡ Z−1Tr

[
φ(t, ϕ,x)φ†(0, 0,y)e−β(H−ΦQ−ωJ)

]
= eβΦqZ−1Tr

[
φ†(0, 0,y)φ(t+ iβ, ϕ+ iβω,x)e−β(H−ΦQ−ωJ)

]
= Gβ,Φ,ω

− (t+ iβ, ϕ+ iβω,x,y) , (4.3)

which is a generalization of (2.14). In terms of the Riemannian geometry at the Wick-
rotated boundary, we should be imposing a twisted identification of the coordinates
on the boundary ∂M = S1 × S2 with metric given by the product of the two round
metrics:

(tE, ϕ) ∼ (tE, ϕ+ 2π) ∼ (tE + β, ϕ− βΩ) . (4.4)

Compared to the case of the static charged black hole, we specify an additional “chem-
ical potential” Ω = −iω at the boundary, corresponding to a U(1) symmetry of the
solution. We are thus in a grand canonical ensemble and we are looking for a free
energy βF (β,Ω,Φ) = − logZ(β,Ω,Φ). However, we now have an angle coordinate on
S2 that should be identified modulo a pure imaginary periodicity, if the Lorentzian
angular velocity ω ∈ R.
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Concretely, the paradigmatic spacetime describing a rotating electrically charged
object in flat space is the Kerr–Newman solution, which has the line element

ds2 = −∆− a2 sin2 θ

Σ
dt2 − 2a sin2 θ

r2 + a2 −∆

Σ
dtdϕ

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θ dϕ2 +

Σ

∆
dr2 + Σdθ2 ,

(4.5)

and the gauge field
A = −Qr

Σ
(dt− a sin2 θ dϕ) + γdt . (4.6)

Here γ is a constant gauge transformation, and

Σ ≡ r2 + a2 cos2 θ , ∆ ≡ r2 − 2Mr + a2 +Q2 . (4.7)

This metric and gauge field are real if the parameters (M,Q, a) are real, which means
that upon Wick rotation, this metric will not be Riemannian but complex, since the
terms gtEϕ will be pure imaginary, and the gauge field as well. It is sometimes called a
“quasi-Euclidean” metric.16 How can we analyse this case? What is the regularity that
one should impose on a complex solution?

One way out of this impasse is to analytically continue both a and Q: one defines
a = −iα, Q = −iq, thus obtaining a Riemannian metric and a real gauge field [GH79].
We pick as ∂M a surface with constant r = r0, and consider the induced metric and
gauge field. As r0 → ∞, they simplify and we find

hE = dt2E + r2
(
dθ2 + sin2 θdϕ2

)
, A = iγ dtE , (4.8)

and imposing the identifications (4.4) we match the required boundary conditions,
provided iγ = Φ. Following now the general prescription found earlier, we expect
to describe the thermodynamics of the system imposing that the classical solution is
smooth. After the analysis, we would analytically continue the parameters back to
their Lorentzian values.

Imposing smoothness of the metric means that the topology is locally the product
of a cigar and a 2-sphere. The Killing vector

ξE =
∂

∂tE
− Ω

∂

∂ϕ
(4.9)

16Formally, this is a class of metrics that when put in the ADM form have pure imaginary shift
vectors N i (see (4.24)).
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generates a U(1) isometry of the spacetime: its orbits are circles in the cigar factor
that shrink as we go to r = r+, since |ξE|2|r=r+ = 0, and thus ξE vanishes there: the
fixed point set is the S2 in the transverse space. This corresponds to the fact that in
the Lorentzian metric (4.5), the locus {r = r+ ≡ M +

√
M2 − a2 −Q2} is an event

horizon for the spacetime, and it is generated by the Killing vector

ξ =
∂

∂t
+

a

r2+ + a2
∂

∂ϕ
= iξE|tE=it,α=ia,q=iQ . , (4.10)

Introducing the thermodynamical potentials via the identifications (4.4), together with
smoothness of the gauge field at the origin, gives

β = 4π
r2+ − α2

∆′(r+)
= 2π

r2+ − α2

(r+ −M)
, Ω =

α

r2+ − α2
, Φ = − qr+

r2+ − α2
. (4.11)

These formulae should be viewed as fixing the parameters of the solution (M, q, α) in
terms of the boundary data (β,Φ,Ω). So, in principle one should invert them when
working (as we are) in the grand canonical ensemble and express the on-shell action in
terms of the potentials (β,Φ,Ω). This is impossible to do analytically. However, one
can compute the on-shell action subtracting the value of flat space, and check that the
final result

I =
β

2G
(M − qΦ) (4.12)

satisfies the quantum statistical relation (3.25) in the form

I(β,Φ,Ω) = −SBH + β(⟨E⟩ − Φ ⟨Qe⟩ − Ω ⟨J⟩) , (4.13)

where
⟨E⟩ = M

G
, ⟨Qe⟩ =

q

G
, ⟨J⟩ = −αM

G
, (4.14)

and SBH is the Bekenstein–Hawking entropy given by the area of the (not round) two-
sphere S2

r+
where ξE in (4.9) vanishes

SBH =
π

G

(
r2+ − α2

)
(4.15)

Moreover, one can check that the variables (⟨E⟩ , ⟨Qe⟩ , ⟨J⟩) are indeed canonically con-
jugate to the thermodynamic potentials (β,Φ,Ω). This means that can now view (4.13)
as a Legendre transform from the grand canonical to the microcanonical ensemble, and
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read off the thermodynamic entropy, which (again) coincides with the Bekenstein–
Hawking formula (4.15), naively confirming once again the general prescription of the
gravitational path integral.

Despite the apparent success of the computations, we have bypassed the subtleties
of the complex metric by performing analytic continuation of the parameters, but the
interpretation of the ensemble is now quite obfuscated. The problem we started with
was the description of the grand canonical ensemble in the real Lorentzian background
(4.5), that is, the matrix element of the (un-normalized) density matrix

ρ = e−β(E−ΦQe−ΩJ) . (4.16)

The computations done with the Riemannian metric resulted in the relations (4.11)
between the boundary conditions and the parameters, which in terms of the original
constants in the Lorentzian metric become pure imaginary

β = 2π
r2+ + a2

r+ −M
, Φ = −i

Qr+
r2+ + a2

, Ω = i
a

r2+ + a2
. (4.17)

Therefore, the Riemannian metric actually corresponds to a saddle of a putative grand
canonical ensemble based on the (un-normalized) density matrix

ρ = e−β(E−i|Φ|Qe−i|Ω|J) . (4.18)

Not only is the physical meaning of this operator not clear, but even its mathematical
properties are not obvious, since evaluated on the states it would correspond to complex
weights in Gibbs’ formula (2.9), so it would not be clearly convergent.

An alternative approach is to include in the path integral the complex “quasi-
Euclidean” metric obtained performing the Wick rotation t = −itE but without analytic
continuation of the constants a and Q. However, once we open the Pandora’s box of
complex metrics in the path integral, we need to define the rules for their inclusion.
For instance, one could require that the density matrix (4.16) does have a convergent
trace, which would impose a condition on the eigenvalues of E−ΦQe−ΩJ . As it turns
out, in flat space such condition is generically violated, as one can make J arbitrarily
large by going sufficiently far, and the quasi-Euclidean Kerr–Newman metric is not a
good saddle of the path integral.
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4.3 Subtleties

We delved into the “allowability” of complex metrics in the path integral due to rotation,
but there are more subtleties in the Euclidean quantum gravity approach, which we
have until now steered clear of and are the subject of active research. We’ll mention
here a few without attempting to propone any solution.

4.3.1 Inclusion of multiple topologies

In the discussion of quantum field theory on Lorentzian curved spacetime, we usually
restrict ourselves to globally hyperbolic spacetime. These spacetime have a Cauchy
surface Σ such that the domain of dependence (which, informally, is the union of the
points that are reached from Σ via a causal curve) is the entire manifold. Examples of
globally hyperbolic manifolds are flat space and the Kruskal extension of Schwarzschild,
but many more are known. Global hyperbolicity is our notion of “good behaviour” for a
spacetime, since given data on Σ we can compute the solution to hyperbolic equations
everywhere on M . Moreover, it excludes obviously problematic situations, such as
closed timelike curves. Globally hyperbolic spacetime are “good” for various reasons,
among which is the existence of a global time function such that surfaces of constant t
are Cauchy surfaces with topology Σ and the topology of spacetime is Rt × Σ. After
Wick rotation, this leads us naturally to consider Euclidean solutions with (asymptotic)
boundary S1

tE
× ∂Σ, which encode thermal properties of the Lorentzian system. More

generally, the S1
tE

factor intuitively represent the existence in Lorentzian of a trace over
a Hilbert space defined on the spatial slice Σ.

However, there are plenty of gravitational instantons : Riemannian regular solutions
with finite Einstein–Hilbert action (with GHY term and regulator) and (asymptotic)
boundary with topology different from S1 × ∂Σ.17 For instance, we could have smooth
solutions which interpolate between different topologies (think about pair of pants)
that would be singular in Lorentzian, or even smooth solutions with boundaries that
do not at all have a well-defined Lorentzian continuation (for instance, they could have

17Their name comes from the analogy with instantons in quantum field theory (and quantum me-
chanics), where the name denotes solutions to the Euclidean equations of motion with finite action.
Schematically, these represent tunneling effects between different vacua of the theory.
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topology M ∼= R4 and fill a ∂M ∼= S3, or even more exotic three-manifolds).18 What
should we make of these solutions?

4.3.2 “Conformal factor problem”

One of the reasons we put forward as an argument for the use of the Euclidean action in
the path integral for quantum gravity was that in Euclidean signature the path integral
of quantum field theory converges. Whilst this does hold for the theories of fields with
spin 0 and 1 and for anti-commuting with spin 1

2
, which have positive semi-definite

actions, it is not true for gravity, because the Euclidean action

SE[gE] = − 1

16π

∫
M

R
√
gE d4x− 1

8π

∫
∂M

K
√

hE d3x (4.19)

does not have a definite sign [GHP78]. Indeed, under a Weyl rescaling of the metric
gE to g̃E = Ω2gE (which is not a diffeomorphism but a change in the space of metrics),
we have

R̃ = Ω−2
(
R− 6Ω−1∇2Ω

)
, K̃ = Ω−1

(
K + 3Ω−1na∇aΩ

)
. (4.20)

Therefore (integrating by parts and using the divergence theorem)

SE[g̃E] = − 1

16π

∫
M

(
Ω2R + 6 |dΩ|2

) √
gE d4x− 1

8π

∫
∂M

Ω2K
√

hE d3x , (4.21)

and we can make this arbitrarily negative by choosing |dΩ|2 sufficiently large, so the
Euclidean gravity action is unbounded below. This problem does not arise at the
leading order in the semi-classical expansion (3.23), as one is considering only a solution
of the equations of motion, but it does become crucial when including the one-loop
contribution.

4.3.3 Gauge group

Another problem that only arises when going beyond the leading order in (3.23) is
that of gauge redundancy, because in doing the path integral one integrates over all
configurations, even those that are physically equivalent because of redundancy of the
description. We then use elaborate instruments to account for this (e.g. BRST or BV

18The existence of a time-orientable Lorentzian structure on a manifold requires certain topology,
whereas this is not true of Riemannian metrics, which exist on any smooth manifold.
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formalism), but first we must establish whether gravity has these redundancy. General
relativity is indeed a gauge theory, but it is not like any gauge theory you may have
seen until now, because the gauge group is the infinite-dimensional group of diffeo-
morphisms connected to the identity Diff0(M).19 The Lie group of diffeomorphisms
is not necessarily connected: for instance if M is a Lie group G, then G acts on it-
self via left-translation, so Diff(G) contains G, and thus may have multiple connected
components. Components that are not connected to the identity are considered to act
non-trivially on the theory, that is, they are not redundancies to be “gauged away.” In
fact, even the action of diffeomorphisms in the component connected to the identity
may be non-trivial.

Let Xa be a vector represting the infinitesimal action of a diffeomorphism in
Diff0(M), and we let Xa act on the Lagrangian density LEH = (R − 2Λ)

√
gE via

Lie derivative. Recalling that LEH is a tensor density of weight 1, we have

LX [(R− 2Λ)
√
gE] = Xa∂a(R− 2Λ)

√
gE +∇aX

a(R− 2Λ)
√
gE

= ∇a [X
a(R− 2Λ)]

√
gE ,

(4.22)

so we can use the divergence theorem to conclude that the variation of the Einstein–
Hilbert action is a boundary term

δX

∫
M

(R− 2Λ)
√
gE d4x =

∫
∂M

naX
a(R− 2Λ)

√
hE d3x . (4.23)

If the vector field does not have compact support or more generally vanishes suffi-
ciently fast near the boundary, the action is not invariant under the diffeomorphism
it generates, and so it is not a redundancy in the description. The diffeomorphisms
that act in a non-trivial way on the theory, whether because they are not connected to
the identity or because the generating vector field does not vanish at the (potentially
asymptotic) boundary, are sometimes called large diffeomorphisms (in contrast to small
diffeomorphisms).

This fact also emerges in the Hamiltonian formulation of general relativity. In a
globally hyperbolic spacetime, as already mentioned, we have a global time function

19For the cognoscenti : at the end of the day, the difference with, say, Yang–Mills theory of the Lie
group G, which is based on a G-principal bundle P → M is due to the fact that in GR the relevant
principal bundle is the frame bundle itself.
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t : M → R such that {t = 0} is a Cauchy surface, and from there we can construct
additional coordinates xi such that the metric has the form

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) . (4.24)

This is referred to as “3 + 1” or ADM decomposition (Arnowitt–Deser–Misner), and
shows that we can rewrite the action in terms of the lapse function N(t,x), the shift
vector N i(t,x) and the induced metric on the Cauchy surface at constant t, hij(t,x).
They work as “canonical positions” for the initial value problem. One then computes
the canonically conjugate momenta, and it turns out that the only relevant one is the
momenta canonically conjugate to hij, which is Πij

√
h, where Πij is the Brown–York

tensor that already appeared in (3.19) (basically with a computation analogous to
that leading to (3.18)). The resulting Hamiltonian is composed by a bulk term and a
boundary term proportional to Πij, but the bulk term vanishes on-shell, and the only
contribution comes from the boundary.

This should not come to you as a surprise. Defining energy in general relativity
is not easy, because of the equivalence principle and the properties of small diffeo-
morphisms: in a neighbourhood of a point, you can always define normal coordinates
such that any quantity defined with the metric and its first derivatives would vanish,
thus “gauging away” gravity. However, as we just found out, large diffeomorphisms are
not just gauge redundancies, and correspondingly the Hamiltonian does receive con-
tributions from the boundary that can be evaluated. In fact, one can show that the
variation of the action with respect to the boundary metric, that is Πij in (3.19), be-
haves as a stress-energy tensor (explaining its name Brown–York stress-energy tensor).
Again, this is not a surprise: our (admittedly brief) study of black holes suggested
that gravitational physics in a region should be described in terms of its boundary (the
holographic principle mentioned in section 2.5), which perfectly resonating with what
we just described! In fact, this is borne out in the context of the AdS/CFT correspon-
dence: the dynamics of gravity in AdS is actually described by a theory “living” on its
boundary for which the Brown–York tensor is the actual stress-energy tensor.

– 61 –



References

[AHM+20] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, The

entropy of Hawking radiation, Rev. Mod. Phys. 93 (2021) 035002,

arXiv:2006.06872 [hep-th].

[BCH73] J. M. Bardeen, B. Carter, and S. W. Hawking, The Four laws of black hole

mechanics, Commun. Math. Phys. 31 (1973) 161–170.

[BD84] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge

Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, UK,

2 1984.

[Bek72] J. D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972)

737–740.

[Bek73] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333–2346.

[Bou02] R. Bousso, The Holographic principle, Rev. Mod. Phys. 74 (2002) 825–874,

arXiv:hep-th/0203101.

[dHSS00] S. de Haro, S. N. Solodukhin, and K. Skenderis, Holographic reconstruction of

space-time and renormalization in the AdS / CFT correspondence, Commun.

Math. Phys. 217 (2001) 595–622, arXiv:hep-th/0002230.

[DR23] I. Davies and H. S. Reall, Nonperturbative Second Law of Black Hole Mechanics

in Effective Field Theory, Phys. Rev. Lett. 132 (2024) 171402,

arXiv:2312.07659 [hep-th].

[FR87] S. A. Fulling and S. N. M. Ruijsenaars, Temperature, periodicity and horizons,

Physics Reports 152 (1987) 135–176.

[GH77] G. W. Gibbons and S. W. Hawking, Action Integrals and Partition Functions in

Quantum Gravity, Phys. Rev. D 15 (1977) 2752–2756.

[GH79] , Classification of Gravitational Instanton Symmetries, Commun. Math.

Phys. 66 (1979) 291–310.

[GH93] G. W. Gibbons and S. W. Hawking (eds.), Euclidean quantum gravity , World

Scientific, 1993.

[GHP78] G. W. Gibbons, S. W. Hawking, and M. J. Perry, Path Integrals and the

Indefiniteness of the Gravitational Action, Nucl. Phys. B 138 (1978) 141–150.

– 62 –

http://dx.doi.org/10.1103/RevModPhys.93.035002
http://arxiv.org/abs/2006.06872
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1017/CBO9780511622632
http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/RevModPhys.74.825
http://arxiv.org/abs/hep-th/0203101
http://dx.doi.org/10.1007/s002200100381
http://dx.doi.org/10.1007/s002200100381
http://arxiv.org/abs/hep-th/0002230
http://dx.doi.org/10.1103/PhysRevLett.132.171402
http://arxiv.org/abs/2312.07659
http://dx.doi.org/10.1016/0370-1573(87)90136-0
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1007/BF01197189
http://dx.doi.org/10.1007/BF01197189
http://dx.doi.org/10.1142/1301
http://dx.doi.org/10.1016/0550-3213(78)90161-X


[GP78] G. W. Gibbons and M. J. Perry, Black Holes and Thermal Green’s Functions,

Proc. Roy. Soc. Lond. A 358 (1978) 467–494.

[Haw74] S. W. Hawking, Black hole explosions, Nature 248 (1974) 30–31.

[Haw75] , Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975)

199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].

[Haw78] S. W. Hawking, Euclidean Quantum Gravity , Recent Developments in

Gravitation (M. Levy and S. Deser, eds.), Cargèse Lectures, Plenum, 1978.

[Haw79] , The Path-Integral Approach to Quantum Gravity, General Relativity:

An Einstein Centenary Survey (S. W. Hawking and W. Israel, eds.), Cambridge

University Press, 1979.

[HE23] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time,

Cambridge Monographs on Mathematical Physics, Cambridge University Press,

2 2023.

[HP83] S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in anti-De

Sitter Space, Commun. Math. Phys. 87 (1983) 577.

[HW14] S. Hollands and R. M. Wald, Quantum fields in curved spacetime, Phys. Rept.

574 (2015) 1–35, arXiv:1401.2026 [gr-qc].

[IW94] V. Iyer and R. M. Wald, Some properties of Noether charge and a proposal for

dynamical black hole entropy, Phys. Rev. D 50 (1994) 846–864,

arXiv:gr-qc/9403028.

[Jac03] T. Jacobson, Introduction to quantum fields in curved space-time and the

Hawking effect , School on Quantum Gravity, 8 2003, pp. 39–89.

arXiv:gr-qc/0308048.

[JKM93] T. Jacobson, G. Kang, and R. C. Myers, On black hole entropy, Phys. Rev. D

49 (1994) 6587–6598, arXiv:gr-qc/9312023.

[KU22] C. Kehle and R. Unger, Gravitational collapse to extremal black holes and the

third law of black hole thermodynamics, arXiv:2211.15742 [gr-qc].

[KW91] B. S. Kay and R. M. Wald, Theorems on the Uniqueness and Thermal

Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a

Bifurcate Killing Horizon, Phys. Rept. 207 (1991) 49–136.

– 63 –

http://dx.doi.org/10.1098/rspa.1978.0022
http://dx.doi.org/10.1038/248030a0
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/978-1-4613-2955-8_4
http://dx.doi.org/10.1017/9781009253161
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1016/j.physrep.2015.02.001
http://dx.doi.org/10.1016/j.physrep.2015.02.001
http://arxiv.org/abs/1401.2026
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://dx.doi.org/10.1007/0-387-24992-3_2
http://dx.doi.org/10.1007/0-387-24992-3_2
http://arxiv.org/abs/gr-qc/0308048
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://arxiv.org/abs/gr-qc/9312023
http://arxiv.org/abs/2211.15742
http://dx.doi.org/10.1016/0370-1573(91)90015-E


[Mat09] S. D. Mathur, The Information paradox: A Pedagogical introduction, Class.

Quant. Grav. 26 (2009) 224001, arXiv:0909.1038 [hep-th].

[MTW73] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman,

San Francisco, 1973.

[Pag04] D. N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7

(2005) 203, arXiv:hep-th/0409024.

[Rea20] H. Reall, Part 3 Black Holes, Link, 2020.

[Rea24] H. S. Reall, Third law of black hole mechanics for supersymmetric black holes

and a quasilocal mass-charge inequality, Phys. Rev. D 110 (2024) 124059,

arXiv:2410.11956 [gr-qc].

[Ros05] S. F. Ross, Black hole thermodynamics, arXiv:hep-th/0502195.

[Sch51] J. S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82

(1951) 664–679.

[SV96] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking

entropy, Phys. Lett. B 379 (1996) 99–104, arXiv:hep-th/9601029.

[Tow97] P. K. Townsend, Black holes: Lecture notes, arXiv:gr-qc/9707012.

[Wal95] R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole

Thermodynamics, University of Chicago Press, 1995.

[Wal15] A. C. Wall, A Second Law for Higher Curvature Gravity, Int. J. Mod. Phys. D

24 (2015) 1544014, arXiv:1504.08040 [gr-qc].

[Wit21] E. Witten, Why does quantum field theory in curved spacetime make sense? And

what happens to the algebra of observables in the thermodynamic limit?, 2022.

arXiv:2112.11614 [hep-th].

[Wit24] , Introduction to black hole thermodynamics, Eur. Phys. J. Plus 140

(2025) 430, arXiv:2412.16795 [hep-th].

– 64 –

http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://arxiv.org/abs/0909.1038
http://dx.doi.org/10.1088/1367-2630/7/1/203
http://dx.doi.org/10.1088/1367-2630/7/1/203
http://arxiv.org/abs/hep-th/0409024
https://www.damtp.cam.ac.uk/user/hsr1000/black_holes_lectures_2020.pdf
http://dx.doi.org/10.1103/PhysRevD.110.124059
http://arxiv.org/abs/2410.11956
http://arxiv.org/abs/hep-th/0502195
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://arxiv.org/abs/gr-qc/9707012
http://dx.doi.org/10.1142/S0218271815440149
http://dx.doi.org/10.1142/S0218271815440149
http://arxiv.org/abs/1504.08040
http://arxiv.org/abs/2112.11614
http://dx.doi.org/10.1140/epjp/s13360-025-06288-y
http://dx.doi.org/10.1140/epjp/s13360-025-06288-y
http://arxiv.org/abs/2412.16795

	Introduction
	The laws of black hole mechanics
	Rindler horizon
	Schwarzschild horizon
	Killing horizons

	Hawking radiation and black hole thermodynamics
	The laws of black hole thermodynamics
	Quantum field theory on curved spaces
	Black holes
	Near the horizon of a black hole
	Where to now?

	The gravitational path integral
	Definition
	Gravity action
	Hawking–Page transition

	Selected topics on the gravitational path integral
	Entropy from topology
	Rotation, charge and complex metric
	Subtleties


